The Big Brother’s New Playground: Unmasking the Illusion of
Privacy in Web Metaverses from a Malicious User’s Perspective

Andrea Mengascini
CISPA Helmholtz Center for
Information Security
Saarbriicken, Germany
andrea.mengascini@cispa.de

Abstract

Metaverses are virtual worlds where users can engage in social ex-
changes, collaborate, or play games. Their clients now are JavaScript
programs that run inside modern web browsers. They implement
functionalities typical of multiplayer video games, like 3D and
physics engines, requiring them to maintain complex data struc-
tures of objects in the browser’s memory. Unfortunately, these
objects can be accessed and manipulated by malicious users, allow-
ing them to learn about events beyond the ones rendered on screen
or to hijack the physics of the metaverse to spy on other users.

In this paper, we propose one of the first comprehensive security
assessments for web clients of metaverse platforms. We begin with
a survey and selection of three metaverse platforms and introduce
a software-centric threat modeling approach designed to identify
the security-relevant entities. Then, we propose a JavaScript global
object snapshot diffing technique to identify in-memory objects cor-
related with the attribute and design 10 attacks, of which eight suc-
cessfully executed against at least one of the metaverses, enabling
a malicious user to perform audio/video surveillance or continuous
user position tracking — to mention a few — who could exacer-
bate current threats posed by stalkers and online abusers. Finally,
we discuss the implications of our attacks should the metaverse
become a business tool and possible solutions.

CCS Concepts

« Security and privacy — Web application security; Domain-
specific security and privacy architectures.

Keywords

Virtual Reality (VR) security and privacy; Metaverse security and
privacy; WebXR; immersive web applications

ACM Reference Format:

Andrea Mengascini, Ryan Aurelio, and Giancarlo Pellegrino. 2024. The
Big Brother’s New Playground: Unmasking the Illusion of Privacy in Web
Metaverses from a Malicious User’s Perspective. In Proceedings of the 2024
ACM SIGSAC Conference on Computer and Communications Security (CCS
"24), October 14-18, 2024, Salt Lake City, UT, USA. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3658644.3690249

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).

CCS ’24, October 14-18, 2024, Salt Lake City, UT, USA

© 2024 Copyright held by the owner/author(s).

ACM ISBN 979-8-4007-0636-3/24/10

https://doi.org/10.1145/3658644.3690249

Ryan Aurelio
CISPA Helmholtz Center for
Information Security
Saarbriicken, Germany
ryan.aurelio@cispa.de

Giancarlo Pellegrino
CISPA Helmholtz Center for
Information Security
Saarbriicken, Germany
pellegrino@cispa.de

1 Introduction

Metaverses are virtual worlds where users can interact, engage in
social exchanges, collaborate, or play games. Increasingly, meta-
verses have begun offering cross-platform web-based clients that
are client-side JavaScript programs running inside modern web
browsers.

Web clients implement a variety of functionalities typical of
multiplayer video games, such as rendering the 3D environments
and handling collisions and physics. These functionalities require
web clients to maintain complex data structures of objects in the
browsers’ memory, whose changes are shared between the clients
to achieve global state consistency. Many objects are for the client’s
user presence, e.g., the user’s avatar position and rotation; the rest
are for entities controlled by other users, e.g., their avatars, and
the server, e.g., objects in the scene. While we expect that a client
can dispatch updates on the objects under its control, the system
should prevent the client from sharing updates on other objects.
Unfortunately, the objects in the client’s memory can be accessed
and manipulated by a malicious user using readily available tools,
e.g., DevTools, allowing the user to learn about events beyond the
ones rendered on screen or to hijack the physics of the metaverse
to spy on other users. The impact and extent to which such access
and manipulations threaten the security and privacy of users have
not been explored to date.

The security and privacy of virtual environments have gathered
the attention of the research community primarily due to concerns
around cheating in online games (see Yan and Randell [32] for a
classification of cheating in games). Cheating is the manipulation
of game mechanics to gain an unfair advantage, which manifests
in various forms. Notable among these are the use of aimbots to
automatically target opponents (see, e.g., [7, 33]) and wallhacks to
see through solid objects (see, e.g., [3, 22]), thereby significantly
undermining the integrity of the gaming environment. However,
the metaverse introduces a shift from conventional online games
due to its inherent social component. Unlike traditional games,
metaverses support a broader spectrum of interactions, including
social gathering [23], virtual concerts [21], and social gaming [15].
This shift lessens the focus on cheating, introducing heightened
concerns regarding the security properties that support these so-
cial dynamics, such as confidentiality, integrity, and availability.
Very recently, several works have begun focusing on these security
properties, making a variety of assumptions about potential attack-
ers. These include a server harvesting network-level data [28], a
developer fingerprinting users with ad-hoc room designs [13, 20],
a user (or a server) fingerprinting users based on their mechanic

https://orcid.org/0009-0002-5560-1041
https://orcid.org/0009-0005-4528-1998
https://orcid.org/0009-0007-6223-8945
https://doi.org/10.1145/3658644.3690249
https://doi.org/10.1145/3658644.3690249

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

hand motion [19], and classical web attacker exploiting XSS vulner-
abilities [29]. Unfortunately, none of these studies have comprehen-
sively evaluated the security and privacy of metaverse platforms
from the perspective of a malicious user accessing or manipulating
in-memory data structures of the client-side program.

In this paper, we propose one of the first comprehensive se-
curity assessments for web clients of metaverse platforms. Our
security assessment begins with a survey and selection of three
metaverse platforms which have hosted events such as conferences
and fashion shows. As we aim to deliver an extensive security anal-
ysis, we introduce a software-centric threat modeling approach
designed to identify the security-relevant entities and attributes of
the metaverses, namely, the Entity-Attribute Model. Starting from
each attribute, we propose a JavaScript global object snapshot diff-
ing technique to identify in-memory objects correlated with the
attribute and test the objects for read and write access and the
implication of these operations. Finally, we design 10 attacks based
on these access patterns, demonstrating the feasibility of eight at-
tacks against at least one platform. Overall, our security assessment
shows that current implementations may not be sufficiently robust
against malicious users. Several of our attacks enable targeted and
untargeted forms of audio/video surveillance and continuous user
position tracking, exacerbating the risks posed by various threat
actors. Notable among these are stalkers and online abusers, who
could leverage these vulnerabilities to conduct more refined forms
of harassment, threats, and intimidation within virtual communi-
ties.

Summarizing, in this paper, we make the following contributions:

o We perform one of the first comprehensive security assess-
ments of web clients of metaverse platforms from the per-
spective of a malicious user;

e We survey 27 metaverse platform and test three of them;

e We propose a new software-centric threat modeling ap-
proach designed to identify the security-relevant entities
and attributes of metaverses;

e We propose a JavaScript global object snapshot diffing tech-
nique to identify objects related to security-relevant attributes;

e We develop and release a browser extension! implementing
our diffing technique;

e We design and successfully execute eight attacks, includ-
ing audio/video surveillance and continuous user position
tracking.

2 Background

Before presenting our analysis and results, we introduce the build-
ing blocks of our paper.

2.1 Metaverse Web Client

Metaverses are virtual worlds where users interact, socialize, and
play games, typically accessed through clients on platforms like
MacOS, Windows, Android. These virtual environments can range
from recreating public plazas [14] for social gatherings to hosting
conferences where users can interact either in large groups for
presentations as well as in smaller groups for private conversa-
tions [5, 9]. Recently, cross-platform web clients have emerged,

The tool is available at https://anonymous.4open.science/r/big-brother-playground

Andrea Mengascini, Ryan Aurelio, and Giancarlo Pellegrino

[Pos user U;=(x,y,2)]

Memory
i
7
’
7
1
i
1
1
1
1
1

C— g

Multiuser networked-aframe, ...
[Pos user U,=(x,y,z)]
3 Game/XR A-Frame, react-three-fiber, ..\
o
R 1)) Three.js, Babylon.js, ...
APIs Web{XR,GL,GPU,Socket}, ...

Browser Server

Figure 1: Components of in a metaverse web client

utilizing client-side JavaScript and libraries to create interactive,
multi-user 3D environments.

Fig. 1 illustrates an example of a metaverse web client and its
layered architecture. At the bottom of the stack, we find browser
APIs that provide basic, low-level primitives for rendering 3D con-
tent (e.g., WebGL and WebGPU), accessing head-mounted displays
and controllers (e.g., WebXR), and communicating in real-time with
servers (e.g., WebSocket) and other clients (e.g., WebRTC). Above
these primitives, we have JavaScript 3D engines, such as three. js,
which offer more powerful abstractions, including cameras, lights,
and materials, along with high-level operations such as creating,
displaying, and animating 3D objects. On top of that, we have game
and mixed reality frameworks specialized in the construction of en-
vironments, the definition of experience rules, and the interactions
among various entities. At the top, we have frameworks facilitating
the development of multiuser environments, providing high-level
network capabilities to distribute state updates to other clients, or
connecting nearby users via voice/video chat.

When the web client is executing, these libraries initialize and
maintain data structures stored in the memory of the browser. These
data structures usually store the parameters and the state of the 3D
environment and users are updated upon a change of such state.
For example, when a user interacts with the scene, e.g., it moves
forward in the environment, the client pushes a state update to
other clients with the aid of a server. Each client then updates the
internal data structures accordingly, remaining synchronized with
all other clients.

2.2 Threat Model

2.2.1 From Cheating to Security Properties. The research commu-
nity has focused on the security of virtual environments due to
concerns about cheating in online games, which includes the use
of aimbots and wallhacks to unfairly manipulate game mechanics.
However, the emergence of the metaverse, characterized by a sig-
nificant social component that supports diverse interactions like
virtual concerts and social gatherings, shifts this focus. In the meta-
verse, the emphasis on security concerns transitions from merely
preventing cheating to ensuring broader security properties like
authenticity, confidentiality, integrity, and availability, which are
crucial for supporting its complex social dynamics.

Consider a scenario within a metaverse platform hosting a virtual
conference, such as IEEE VR [5], where users can present their

https://anonymous.4open.science/r/big-brother-playground

The Big Brother’s New Playground

Malicious TN

User \\ B

a) - -

Malicious i o Benign
User User

2 ==

Figure 2: Attack scenarios: At the top, the attacker runs the
malicious code in their browser; at the bottom, the attacker
exploits a code injection to run the malicious code in the
victim’s browser.

/
Eo’

9 % \
G

work and engage in private conversations. Here, multiple groups
of attendees simultaneously engage in discussions within the same
virtual room, each group isolated in their own private discussion.
The platform is designed to maintain privacy both audibly and
visually; conversations are not audible to others beyond a certain
proximity, and virtual walls render the groups invisible to anyone
positioned behind them. This design prevents anyone from seeing
or hearing inside these spaces unless they explicitly enter, thereby
alerting the conversing parties of their presence. Such features
ensure that private discussions remain confidential, emulating real-
life physical constraints within the virtual environment. Therefore,
the platform supports the authenticity and privacy of interactions
by visibly indicating when another entity approaches their space,
and by maintaining the consistency of each participant’s digital
identity throughout the conversation. However, if an attacker a)
becomes either not visible or can ignore its visual obstructions or
b) replicates an attendee’s name tag and avatar to infiltrate this
space, they could extract sensitive information without detection.
Those breaches not only compromise privacy but also disrupt the
integrity of user interactions, undermining trust in the platform’s
security measures.

2.2.2 Attacker Model. In this study, we focus on identifying threats
that violate the security properties outlined previously and on
illustrating these threats through concrete attacks against real web-
based metaverses. We do not investigate classical web security
threats like XSS or SQLI. Instead, we focus on how attackers can
manipulate elements and properties within the metaverse, such as
avatars and object positions, to violate the security properties.

We define our attacker model as a malicious user within a meta-
verse environment, operating independently without collusion with
other malicious users or reliance on an external server to execute
attacks. This attacker is a normal user, possessing no additional
capabilities beyond what is typically available to any other user.
The attacker begins by gathering information about the metaverse,
including JavaScript code, objects stored in its memory, and net-
work messages. This reconnaissance phase is conducted offline to
study properties and state-changing operations in the platform.
Once enough informations have been collected, the attacker creates

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

malicious JavaScript scripts specifically designed for the targeted
vulnerabilities. In the first scenario, as shown by the top diagram
(a) in Fig. 2, the attacker enters the metaverse and directly executes
these scripts from their own browser to manipulate the environ-
ment or eavesdrop on other users. In this case, the attacker can
extract information directly from the browser. In a second, more
covert scenario, shown at the bottom (b) of Fig. 2, the attacker uses
the same initial reconnaissance and script preparation steps (1).
However, instead of executing attacks directly, they deploy these
scripts through a compromised system or by exploiting a code vul-
nerability in the web metaverse that allows JavaScript execution.
This method enables the attacker to execute the script from the
victim’s browser (2), potentially without their knowledge. In this
scenario, cross-origin requests can be used to exfiltrate data since
the attacker does not have direct access to the benign user’s client.
The success of an attack is determined by the attacker’s ability to
gain more capabilites then a normal user. For example, an attack is
considered successful if the attacker can overhear private conver-
sations without being present in the same virtual space or if they
obtain information beyond the visual limits set by the developers
of the metaverse.

3 Methodology Overview

This section summarizes our methodology, starting from the survey
of existing metaverse systems and our selection criteria of the
metaverses under test (§ 3.1) and then presenting the analysis we
conducted on each system (§ 3.2). Finally, this section discusses
the risks of our study and presents the mitigations we put in place

(§3.3)

3.1 Metaverse Platforms Under Test

3.1.1 Survey and Data Collection. We want to evaluate metaverse
platforms that are actively used and popular. Initially, we consid-
ered using SteamVR? to identify relevant platforms based on a list
of popular VR games (including metaverses) ranked by monthly
active users. However, since SteamVR games are platform-specific,
e.g., Windows, we needed a different approach for web-based meta-
verses.

To create our list, we first searched Google using the keywords
“web” and “metaverse”. We examined the first five pages of results,
collecting a total of 50 web pages (10 websites per result page).
We visited each website and scanned the text for platform names,
then used Google Search again to find the main website for each
platform.

Next, we focused on metrics to capture popularity. We first cre-
ated accounts on these platforms and entered them to count the
number of players in the busiest rooms. To account for different
timezones, we conducted this measurement four times, spaced six
hours apart. We then confirmed that each platform was utilizing the
WebXR API, a browser API that enables JavaScript to interact with
head-mounted displays. We also integrated data on the popularity
of each platform domain name using SimilarWeb [25] and searched
for the platforms on Google News to find real-world applications
in events such as concerts and conferences.

2SteamVR is a software platform developed by Valve that extends Steam

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Platforms Visits ~ Scholar ~ Framework Events =~ WebXR
Platform 1 138,800 224 A-Frame 2 Yes
Platform 2 17,000 30 Babylonjs 1 Yes
Platform 3 23,200 158 PlayCanvas 1 Yes
Dreamwave 3,900 1 Undet. 2 Yes
VESTA 5,000 1 threejs - Yes
Hyperfy 21,900 0 threejs - Yes
Third Room 17,000 0 Manifold - Yes
Ethereal Engine 11,900 0 threejs 1 Yes
VRLand 6,800 0 A-Frame - Yes
Ozone Metaverse 3,800 0 threejs - Yes
Virtual REM5 Unrk 0 A-Frame - Yes
Reach Metaverse 1,100 0 Unity - No
Decentraland 449,400 1520 Unity 2 No
cryptovoxels 54,900 366 Undet. - No
Spatial 657,800 29 Unity - No
virtway 16,000 21 Undet. - No
oncyber 65,800 11 threejs 1 No
Vircadia 32,800 9 Babylonjs - No
Musee Dezentral 6,000 6 threejs - No
Mona 39,000 2 Unity - No
NOWHERE 28,800 0 Undet. - No
Croquet 21,700 0 Unity - No
Horizon Worlds 164,500 186 Undet. - No
Arjum 7,900 15 threejs 2 No
Active Replica 7,000 3 A-Frame - No
Portals 13,900 1 Unity - No
Virtual Reign N.a. 0 A-Frame - Yes

Table 1: Survey of metaverse platforms

Finally, we completed our collection by assessing the academic
relevance by counting the number of papers referring to them,
using the Google Scholar search string “platform name metaverse”.

3.1.2 Platforms for our Experiments. Tab. 1 displays the results of
our survey on web-based immersive environments. Through the
Google keyword search, we identified 27 immersive platforms. Of
these, 12 platforms support the WebXR API and thus support head-
mounted displays, enhancing the immersiveness of the experience.
The remaining platforms do not support such devices, and users
interact with the virtual environment through a regular display
using a keyboard and mouse. As increased immersiveness may
create or strengthen a false sense of privacy, we decided to focus
on platforms using the WebXR API only and discarded the ones
that do not.

One of the 12 platforms that supported WebXR, Virtual Reign,
ceased to exist as its website is no longer accessible. We therefore dis-
carded it from consideration. From the remaining 11 platforms, we
eliminated those that lacked coverage in our Google News search,
narrowing our focus to five platforms.

For our security assessment, which requires non-negligible man-
ual work (refer to the following section), we selected three platforms
only based on their usage in security, privacy, and other notable
events. Platform 1 was chosen due to its use in an open source
event, Platform 2 for its use in a security conference, and Platform
3 for its use in a fashion show.

3.2 Overview of our Security Assessment

A security assessment boils down to the enumeration of threats
against a program. Several approaches exist to help enumerate
threats [24]. For example, one can enumerate attacks starting from

Andrea Mengascini, Ryan Aurelio, and Giancarlo Pellegrino

an attacker model and determine how such an attacker can vio-
late a security property, i.e., attacker-centric approaches. Another
approach consists of enumerating the assets an attacker may be
targeting, i.e., asset-centric approaches, and determining how an
attacker can violate a security property on them. The main short-
coming of both approaches is that impersonating the attacker role
or the identification of assets tends to be subjective and riddled with
bias, dismissing attacks because of personal opinion or beliefs [24].
As an alternative, a recommended strategy is the software-centric
threat modeling approach [24], which is more objective, as the start-
ing point is an over-simplified model, e.g., the Data Flow Diagram
(DFD), manually curated from the software under analysis [24] (ei-
ther from the code or design artifacts). The enumeration of threats
is conducted for each model component, using strategies such as
Per-Element-STRIDE [24]. Unfortunately, in our scenario, while
the client-side JavaScript code is available, it is often minimized,
compressed, or obfuscated, rendering modeling or even reversing
its design diagrams hard in practice, thus hampering our ability to
extract a model like a DFD.

We tackle such a challenge and propose a different approach that
is software-centric at its core, but it can work in the context of web
clients and, more specifically, of metaverses. We will first explore
the metaverse scene to extract the entities and attributes that an
attacker may want to target or exploit. We will then analyze the web
client memory to find objects that implement these attributes and
determine the degree of control an attacker has over them. Finally,
we will determine the threats an attacker can pose by enumerating
possible attacks that exploit the attributes. Specifically, our security
assessment approach relies on three main steps:

Step 1: Entity-Attribute Model Extraction. We first derive a model
that can identify entities and attributes of the metaverse that an
attacker may want to target or exploit. We build such a model not
from the code but by inspecting the metaverse as regular users
enumerating the primary entities, such as the client’s user, other
users, objects in the scene, the scene itself, and attributes that
may interest an attacker, such as users’ identifiers, positions, and
camera positions. For example, in a metaverse, we first identify the
user as an entity. By exploring user interface interactions, such as
directional keys that affect position and mouse movements that alter
camera angles, we catalog attributes like avatar position and camera
rotation. The goal of this step is to have a complete enumeration of
the entities and attributes that populate such metaverses.

Step 2: Objects in Memory. We then analyze web client memory to
find objects that implement these attributes by comparing memory
snapshots after changing conditions in the environment. We label
an attribute with read if an attacker can access its values whenever
the entity’s state changes. For instance, a user’s position is consid-
ered readable if the attacker can access the new position from the
identified object as soon as the user moves. We use the label write
if the attacker can modify the attribute’s value, and the change is
propagated to other clients. For example, the user’s position is con-
sidered writable if an attacker can change its state, and the change
is visible to other users, indicating effective propagation across
the system. This step focuses on assessing the extent of control an
attacker exert over the previously identified attributes.

The Big Brother’s New Playground

Step 3: Threat Enumeration and Attack Execution. The next step
determines the implications of an attacker exercising control over
attributes (read and write) against the security properties, i.e., au-
thenticity, integrity, confidentiality, and availability. Identifying
potential attacks mostly involves manual efforts that rely heavily
on the creativity and expertise of security researchers. We start with
attributes that the attacker can read, which often represent threats
by themselves. For example, if an attacker can access the position
of all users at any time, they can track these positions over time
and infer interpersonal relationships based on users proximity pat-
terns. We then consider writable attributes. Our analysis includes
verifying if writable attributes could be used to access additional,
limited attributes. For instance, if updates are received only from
users within a server-side pre-defined radius, an attacker could
forge rapid movements across the scene to gather position updates
from more users. We also explore attacks by starting with single
attributes and then combining readable and writable attributes,
further amplifying an attack’s potential. One such attack, which
we have named Targeted A/V Surveillance, allows an attacker to
collect real-time positions of a victim while navigating the virtual
space and update only the attacker’s camera (not the avatar) to the
victim’s position, facilitating advanced forms of user stalking. The
goal of this last step is to determine the threats an attacker can
pose by enumerating possible attacks that exploit the attributes
identified in the previous step.

3.3 Ethics Considerations

This section examines potential adverse outcomes of our research
and the mitigation strategies we employed.

Metaverse Platform Users The security assessments conducted in
this paper might inadvertently affect other users on the platform
who join the same experiences where tests are carried out. To
mitigate this risk, we operated within private rooms or instances
on each metaverse platform. Access to these instances was strictly
regulated through invitations, ensuring entry was limited to our
test accounts. This approach prevented the general public from
inadvertently accessing these environments, thereby safeguarding
the privacy and experience of regular users.

Before planning and executing our experiments, we confirmed
that all the platforms under test offer such instances.

Platform 1 enables the creation of private, invite-only rooms.
Guests can join using invite links sent by the creator, who can
revoke these links after users join, preventing further access. In
our analysis, we created links for our controlled accounts and then
promptly revoked them to ensure exclusivity. Platform 2 allows
the creation of password-protected rooms or instances, which only
users with the correct password can access. Platform 3 offers to
create a private instance of a room with a randomized session ID
whose links were never made public.

Metaverse Platform Provider Another risk posed by our experi-
ments is the potential negative impact on the integrity, operational
stability, and availability of the platforms. Our security assessment
primarily involved examining and tampering with objects stored
in the web browsers’ memory running on the tester’s computer. As
direct object modifications are confined to client-side tampering,

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

the risk of affecting the server is minimal. Furthermore, when tam-
pering with network update messages, our modifications did not
involve the insertion of harmful payloads, such as those exploiting
server-side code vulnerabilities (e.g., XSS or SQLi). Instead, our
changes involved replacing a value of one type, such as a number,
with another of the same type. Additionally, the volume of messages
sent by our experiments was negligible compared to the regular
stream of updates exchanged between clients, ensuring that our
activities did not overwhelm the server with requests.

Responsible Vulnerability Disclosure Our evaluation uncovered
several technical issues that could be classified as software vulnera-
bilities. Currently, we initiated a responsible vulnerability disclo-
sure process with the affected parties, adhering to the following
protocol. For Platform 1 we submitted the security report through
the “Report a vulnerability” link on the GitHub repository and it is
currently on triage. For Platform 2 , we obtained a contact point
from its developer and sent them the report. For Platform 3, we
obtained a valid contact point using the various communication
channels offered, such as the web contact form, Twitter/X handle,
and the technical support Discord channel and sent them the report.
We will send reminders to the vendors, spaced two-three weeks
apart, up to a period of 90 days in total. If the developers remain
unresponsive, refuse to, or do not patch the vulnerabilities after
this period, we will anonymize the names of the platforms in the
published version of this manuscript.

4 Entity-Attribute Model

This section presents the entity-attribute model and instantiates it
on our metaverse platforms under evaluation.

4.1 Construction

We conducted a detailed, systematic exploration of the core func-
tionalities within the three metaverse platforms, deliberately ex-
cluding the interstitial menus associated with entering the virtual
worlds.

Those menus, typically used for selecting which instance to enter
or adjusting graphical and language settings, are not integral to
the core metaverse experience. Similarly, the internal user chat is
an ancillary feature like the interstitial menus. Neither element is
central to the primary user interactions within the instances. There-
fore, our investigation focused on the core operational features of
the applications, encapsulating the main user activities available
in the metaverse experience. This investigation was carried out
by two researchers who extensively interacted with the platforms’
user interfaces. They documented each possible user action, along
with the corresponding system responses, to ensure a comprehen-
sive mapping of actionable elements and their potential security
implications within the applications.

From each action, they extrapolated the Ul sequence and the
subject of this action, e.g., the steps required to check where the
objects are located in the room and the subject — the object coor-
dinates —, or the steps required to change the username and the
subject — the username tag. Each sequence was analyzed to estab-
lish a link between user inputs and the system’s manipulation of
specific data elements, discovering the underlying attributes that
store it.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Following the UI analysis, the researchers conducted multi-user
experiments to assess the system’ physics rules. This phase aimed
to a) delineate the boundaries of a regular client capabilities, such
as testing the hearing range or whether teleportation was pos-
sible, and b) uncover additional attributes that were not readily
accessible through the U, e.g., the visibility of an object. These
experiments provided deeper insights into the operational limits
and hidden parameters of the metaverse platforms. The identified
attributes were categorized into distinct application entities, and
all Ul state-changing operations were documented for later anal-
ysis. This structured organization streamlined the understanding
of the application’s architecture and improved the efficiency of
subsequent security assessments.

4.2 Components

In our systematic analysis of the three metaverse platforms, we
categorized the significant entities and attributes into four distinct
entity types that encapsulate these virtual spaces’ environmental
and user dynamics. We assigned to each attribute a possible type
for the object that will hold such attribute in memory. The detailed
categorization of attributes, their associated entities, and the ex-
pected type are outlined in the first three columns of Tab. 2. Below,
we provide a comprehensive discussion of these components.

4.2.1 Self. This entity encompasses all attributes directly associ-
ated with the client user, including:

Info: Attributes like a unique ID assigned by the system, user-
name, friend list, and privileges defining user roles and access levels.
We expect these attributes to be stored as Strings or lists of Strings.

Camera: Controls the user’s visual perspective, including posi-
tion, rotation, and field of view (FOV), typically anchored to the
avatar but adjustable for third-person views or focusing on specific
objects. Such attributes are expected to be stored in a parent camera
object (as in three.js [27]) as floating-point Numbers.

Avatar: Represents the user’s virtual body in the metaverse with
attributes including appearance and dynamics like movement speed
or body movement. The avatar movement is typically linked to
camera movement. In the first-person view, the default in our se-
lected apps is that the camera is tied to the avatar’s head; in the
third-person view, it hovers above the head. We expect the spa-
tial attributes of the avatar, such as movement and position, to be
Numbers or triplets of Numbers. For the Appearance, we expect
complex objects with multiple children, such as geometries with
materials and meshes, similar to those used in three.js [27].

Sound: Involves audio interaction capabilities of the user, such
as microphone use with on/off toggles, falloff distance for sound
attenuation, and modes affecting sound transmission and recep-
tion in the environment. We expect the sound to be stored as a
sound object, with attributes like hearing range, falloff distance,
and microphone settings stored as Numbers and Booleans.

4.2.2 Other users. Represents other users within the same environ-
ment, sharing similar attributes with the Self category but including
additional functionalities that can be manipulated, e.g., visibility,
an attribute often used in contexts like moderating user visibility to
combat harassment. We expect the visibility attribute to be stored

Andrea Mengascini, Ryan Aurelio, and Giancarlo Pellegrino

as a Boolean, while for the other attributes, we expect them stored
as in the Self entity.

4.2.3 Objects: These are user-placed or system-generated items
within the metaverse environment that possess their own set of
manipulable attributes:

Info: Information like Visibility and Position that determine how
and where objects appear within the scene. Similarly to previous at-
tributes, we expect the visibility attribute to be stored as a Boolean,
the position as a triplet of Numbers, and the appearance as a com-
plex object with multiple children.

Sound: Objects can act as sound sources, contributing to the
audio landscape. We expect their type to be a sound object.

4.2.4 Instance: Defines the broader environment settings that gov-
ern the collective user experience:

Properties: Such as room ID, password protection, list of users
and their privileges, and settings like fly mode or privacy options
(public/private). We expect those attributes to be stored as Boolean,
Strings, or as list of Strings.

Scene: Static elements within the room that enhance the visual
and functional complexity, such as tables or decor, each with a
specific appearance. We expect the scene’s Appearance to be stored
as a complex object with multiple children.

5 Objects in Memory

Once an entity-attribute model of a metaverse is established, we can
locate objects implementing these attributes within the client-side
JavaScript execution environment stored within the browser ad-
dress space. Different methods are available to access this memory.

The first method involves dumping the memory allocated by
the browser process using operating system primitives, such as
gcore in Linux systems. However, this approach is complicated
by the fact that browsers are complex applications, often running
multiple threads and processes and incorporating various engines
like JavaScript interpreters and HTML rendering engines. These
components maintain many objects in memory that do not relate
to our model, which increases the complexity of our analysis.

We opted for a simpler second method, inspecting only the

memory of the JavaScript interpreter. Popular browsers, includ-
ing those based on Chromium and Firefox, offer developer tools
for dumping the JavaScript memory. These snapshots capture all
objects, including those unrelated to the metaverse. However, we
observe that the objects that map to the attributes of our model are
likely shared among various frameworks and components of the
JavaScript program. Typically, these shared objects are properties
of the window global object, whose inspection is more straightfor-
ward and can be performed within the same browser, e.g., through
the browser console, via an extension, and the Chrome DevTools
Protocol. Accordingly, we use this approach to access the memory
and search for our objects of interest.
General Approach Our approach inspects a snapshot of the
objects in memory, searching for the ones that are related to our
attributes and finding those that can change their state. We achieve
that in three steps.

Step 1: Snapshot Diffing One strategy is to cluster objects in a
snapshot by type—such as strings, dictionaries, and floats—and map

The Big Brother’s New Playground

Entity Attribute Type | Plat.2 Plat. 1 Plat. 3
[UL R WUI R WUI R W
Self
Info ID String - 0o - -0 - -0 -
Username String ® 34 B @ 56 C - - -
Friends Strings[] @ 4 - - - - - - -
Privilege String - 0o - - 0 - - - -
Cam. Position 3floats” |@ 157 A @ 71 A @ 182 A
Rotation 3-4floats”) |@ 194 A @ 119 A @ 201 -
FOV Number - - - - - - - - -
Avatar Position 3floats® |@ 288 A @ 104 A @ 174 A
Appearance obj,String |@ 471 B @ 606 C @ 121 A
Speed Number - - - @ 542 - - - -
Body movement Numbers - - - = = = = = =
Audio Stream Audio obj - = = = = - - - -
Mic On/Off Boolean ® 153 B @ 2252 A 117
Falloff dist. Number - - - - - - - - -
Megaphone Boolean ® 119 B - - - - -
Hearing range Number - - - - - - - = -
Other users
Info D String - O - - 0 - O -
Username String ® 9 ® 70 - - - -
Friends Strings[] ® - - - - - - -
Privilege String - - - - - = = - -
Camera Position 3floats'” |@ 39 - @ 143 C @ 226 -
Rotation 3-4floats®) |@ 22 - @ 325 C @ 124 -
FOV Number - - - - 0 - - - -
Avatar Visible Boolean - - - - 0O - - - -
Position 3floats® |@ 39 - @ 112 C @ 226 C
Appearance obj, String | @ 367 ® 1951 C @ 34 C
Speed Number - - - @ 201 - - - -
Body movement Numbers - - - - - - - - -
Audio Stream Audio obj - - - ® - - - - -
Mic On/Off Boolean ® 10 - @ 59 - 97 -
Falloff dist. Number - - - - - - - - -
Megaphone Boolean [] - - - = - -
Hearing range ~ Number - - - - = = = = =
Objects
Info Position 3floats® |@ 15 - @ 319 C - - -
Appearance obj, String |@ 64 - - - - - - -
Visible Boolean - - - - 0 - - - -
Audio Source Audio obj ‘ - - - - - - - - -
Instance
Properties ID String - 0o - - 0 - - 0 -
Password String ® - - - - - - - -
Admins Strings[] ® 304 - - - - - - -
Members Strings[] ® 212 - @ 399 - - - -
Fly mode Boolean ® 119" - - - - - - -
Privacy String - - - - - - - - =
Scene Appearance obj, String ‘. 10436 - @ 7562 C - - -

Table 2: The entity-attribute model istantiated on the three
metaverses under test. “: Only when the user (self) is an ad-
min; O: When the the attribute was found via manual analy-
sis; (a), <X,V,Z>; & <X,Y,Z> OF <X,Y,Z,W>; (1) The property is not
accessible anymore in the latest version of the Metaverse; A:
Direct Object Editing, B: State Update Functions, C: Network
Update Functions.

these clusters to attributes using the expected type column (see
Tab. 2). However, this approach may fail as many objects share

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

types, resulting in large clusters that require manual analysis, with
no clear signal that an object is linked to an attribute.

Another strategy involves comparing snapshots taken at dif-
ferent times, with the second snapshot occurring after the tester
changed a condition in the environment related to the attribute of
interest. For example, assume the tester seeks to identify attributes
related to their own presence, i.e., the “self” entity. They take one
memory snapshot right after the environment loads and a second
after moving their avatar a few steps forward. By comparing these
snapshots, the tester can identify objects that remained unchanged
after the movement and discard them as unrelated to the controlled
variable. The remaining objects are either related to the movement
or altered by coincidence. Repeating this differential analysis with
additional snapshots can reduce the number of objects to inspect
to a manageable amount. We detail this technique in § 5.1.

Step 2: Mapping Objects to Attributes Following this initial filter-
ing, the tester refines the analysis by categorizing the remaining
objects according to expected types and values, stopping at the first
confirmed match for each attribute. For specific, known values like
usernames set during testing, the tester identifies relevant objects
that match the given value. For attributes with unknown values,
the tester relies on the expected types predetermined in our threat
modeling to trace objects associated with the attributes. We detail
this step in § 5.2.

Step 3: Writable Objects In the final stage, the tester tested the
writability of these objects to determine if modifications could
impact the metaverse’s state and propagate to other clients. This
involved tampering techniques such as directly editing object prop-
erties, using internal framework functions to trigger updates, and
replaying modified network messages. We detail this step in § 5.3.

5.1 Memory Snapshot Diffing

This section presents the algorithms to create snapshots and how
we calculate differences, as in Algorithm 1.

Algorithm 1 Memory Snapshot Diffing.

1: S := CreateSnapshot(window)

2: ¢y =0

3: repeat

4 wait(TIME)

5 S := RemoveChangedObjects(S, window)
6 cy +=1

7. until cpr <N

8: cr:=0

9: repeat

10: TesterAction()

11 S := RemoveUnchangedObjects(S, window)
12: cr +=1

13: until e < T

5.1.1 Create Snapshot. The algorithm starts by taking a snapshot
of window recursively and records each object’s path and content.
The path is a dot-concatenated string of property names and array
positions. For example, the path of the object pointed by the prop-
erty window.obj1.0bj2[1].0obj3 willbe obj1.0bj2.1.0bj3. The

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

algorithm starts from the window object and enumerates the proper-
ties. From these properties, it discards those that are redundant ones.
Redundant properties such as child, parent, and siblings, which are
merely shortcuts to other accessible objects, are discarded. For each
property, the algorithm checks whether it is of a primitive type
(e.g., Boolean, Number, and String). If it is, a copy of the value and
its path is saved. If the object has a non-primitive type, it checks
whether we have visited it before to avoid loops. Unvisited objects
are processed recursively. Instead of a simple recursive call, the
algorithm conducts checks to reduce the number of objects saved
and minimize iteration cycles. Unvisited objects are tested for serial-
izability via the structuredClone() function. Serializable objects,
which do not contain loops, are then considered. These may hold
other relevant objects but are not immediately extracted; instead,
following a lazy approach, they are marked for later examination
during snapshot comparisons. If found serializable, the object is
cloned and stored along with its path. Recursive examination is
limited to non-serializable objects.

5.1.2 Diffing Snapshots. The general idea is to identify those ob-
jects that have changed and those that have not when the tester
changed a condition in the environment. However, such an approach
typically requires taking multiple snapshots of the window object
(before and after the change) and searching for altered objects,
which is resource-intensive.

To optimize this process, we introduce a more efficient approach.
First, as many objects change immediately after the first snapshot
and before the tester changes the condition, it is possible to identify
and discard these objects, thereby narrowing down the number of
objects under consideration. Second, taking multiple snapshots to
identify changes is not always necessary. Given that our snapshot
retains exact copies of the objects, we can directly compare the
objects in the current window with the ones in the snapshot. More-
over, since we have stored the path of each object, there is no need
to search for similar objects. Instead, we can directly access each
object in window using the path stored in the snapshot.

Accordingly, we define and use two types of diffs. The first diff
occurs after the initial snapshot but before the tester modifies the
environment condition. This diff removes from the snapshot all
objects that have changed in the window object. The second diff
happens after the tester has changed the condition, e.g., moved the
avatar or added another user. This diff removes any objects that
have not changed from the remaining objects in the snapshot.

1. Remove Changed Objects This function iterates over the
paths in the snapshot. For each path, it retrieves the corresponding
object from the global object. If the object no longer exists at its
previously recorded location, it is either deleted or relocated. Such
objects are marked as changed and removed from the snapshot. If
the object still exists, it is compared with its snapshot counterpart.
This comparison is conducted using type equality for primitive
types or via a string representation (using the JSON.stringify()
method) for objects, making the comparison more efficient. If the
comparison shows differences in primitive types, the object is re-
moved from the snapshot. If they differ in the string representation,
it indicates that either a nested object has altered or the entire
object has changed. We then recursively explore both objects to
identify identical nested objects, which are then retained in the

Andrea Mengascini, Ryan Aurelio, and Giancarlo Pellegrino

snapshot, while all altered nested objects are discarded. Finally, if
the JSON. stringify() comparison fails, it indicates that the object
now includes a loop. Therefore, the object is visited recursively to
identify and retain nested objects that remained unchanged, adding
them to the snapshot.

2. Remove Unchanged Objects This function is similar to the
previous one. However, instead of removing changed objects, it
removes unchanged ones. For each path in the snapshot, it checks
for the string representation of each object in the window with the
same method as before. If the value within the current object has
changed, that object is marked for removal. Conversely, if the value
remains unchanged, the object in the snapshot is updated with the
new value. If retrieving the value for a given path fails, it indicates
that the object has been deleted or moved. In such cases, the value
at the observed path is considered changed, and no further action
is needed for that object.

5.2 Mapping Objects to Attributes

We now demonstrate how a tester can utilize the memory snapshot
diffing algorithm (Algorithm 1) to identify objects associated with
an entity’s attributes.

5.2.1 Tester Actions. The tester employs Algorithm 1 for each en-
tity and attribute, adjusting only the manual components, i.e., step
10. The other steps are fully automated functions given by the tool.
Depending on the entity involved the tester will control one or
more user accounts. For instance, to analyze attributes related to
position, the manual action involves walking inside the scene. For
the Self entity, the tester uses only one account—the attacker’s—to
manually move the avatar and use the tool function for the diffing
algorithm. For the Other users entity, the tester operates two ac-
counts: one for a user who performs the movement and another for
the attacker, who does not move but executes the diffing algorithm
after the movement action. The tester executes Algorithm 1 for
each attribute to obtain a corresponding list of objects, which may
still include unrelated objects. To refine this list, parameters N and
T can be tuned to control the object removal iterations in steps
3-7 and 9-13 of Algorithm 1, respectively. The wait time between
removals, TIME, is adjustable in step 4. Our empirical settings of
N=1, TIME=10s, and T=3 optimize both the speed and thoroughness
of the reduction process.

5.2.2 Values Analysis and Attributes Types. Finally, the tester en-
gages in a filtering process to review the remaining objects, further
refining the selection. This filtering isolates only those objects that
accurately represent the attribute. Depending on the degree of con-
trol the tester has over the attribute’s value, two distinct filtering
approaches can be employed:

Chosen Values When possible, the tester preselected the at-
tributes values during account setup or while preparing the mem-
ory snapshot diffing algorithm. For instance, usernames were set to
unique strings, which were then located within objects containing
user data or scene elements, such as the nametags displayed above
avatars. The tester searched for these strings within the objects.

Expected Types For cases where the values after the action
were not predetermined, the tester depended on the expected types

The Big Brother’s New Playground

identified during the modeling of the metaverse platforms, as doc-
umented in § 4. This method enabled the tester to locate objects
tied to user position, rotation, and movement speed by identifying
triplets of numbers that responded to movements. Similarly, for
attributes like appearance, the tester searched for string patterns
corresponding to URLS or paths of 3D models and specific structural
or naming conventions used by the 3D libraries, such as UUIDs
or meshes for three.js. The tester then followed the hierarchy of
parent objects to map the entire appearance structure.

5.3 Writable Objects

After identifying and mapping objects to attributes, the tester veri-
fied if a change to the object results in a permanent state change
in the metaverse platform. Although this step was predominantly
manual, the tester followed a structured analysis by employing
three main techniques to trigger a change of state in the metaverse:

A. Direct Object Editing. In this case, the tester locates the object us-
ing the path from the snapshot and modifies the object’s properties
consistently with the attribute’s meaning and data type. The tester
then verifies whether the change was reflected in the scene. For
example, if the tester updates the position of another user, the tester
monitors from both the user’s account and the tester’s account if
the position of the user has changed to the new location. If so, the
attribute is labeled as writable. It may happen that the new value in
the object is replaced by the original one. In these cases, there may
be a component in the code with direct access to the same object
that keeps on rewriting our changes. In these cases, we attempt
to break that reference by cloning the object, modifying the clone,
replacing the original with the clone, and observing the expected
change in the rendered environment.

B. State Update Functions. Even if a direct edit permanently changes
the value in an object, it may not result in a state change in the
metaverse. This may occur because other objects also need to be
edited consistently, suggesting a function that could trigger the
state update across multiple objects. Given that the code can be
obfuscated, finding these functions may not be straightforward.
Instead of searching for the function in the source code, we attempt
to find it at runtime the moment the object is accessed. Accordingly,
the tester assigns a getter and a setter callback function and
sets a debugger breakpoint at the first instruction of our callback
function. Whenever the update function accesses the object, the
JavaScript engine interrupts the execution at the breakpoint. The
inspection of the call stack will reveal the functions accessing the
monitored object and its parameters. The tester saves the function
names and parameters as global objects and forcefully executes the
functions and observes the expected changes.

C. Network Update Functions. Forced execution of functions may
not always be effective. The program could be in a state that causes
the function to fail due to some uncontrolled state object. In these
instances, the tester monitors the network traffic, particularly fo-
cusing on WebSocket communications—a technology that enables
interactive, real-time data exchanges between the client and server.
The tester looks for messages within this WebSocket traffic that

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

might contain strings related to the intended update. If such a mes-
sage is found, the tester forges one with a value of their choice and
observes if the change is propagated to other clients.

5.4 Results

5.4.1 Readable Objects. Our application of Algorithm 1 and the
following analysis provided concrete insights into the management
of sensitive attributes. Below, we summarize the results obtained
from three different applications. The full results are detailed in the
R (Read) columns of Tab. 2.

Platform 1 Results For Platform 1, 17 out of 18 editable at-
tributes were successfully detected. The search began with the
window object, which initially contained over 500k objects. The
results of the filtering process can be seen in the read (R) column
of Tab. 2. Filtering was done primarily utilizing Expected Types,
with the Chosen Value heuristic applied to the usernames. The time
required to finish the process was 8-10 hours for the tester.

Platform 2 Results In Platform 2, our analysis identified 21 out
of 23 modifiable attributes through the user interface using our tool.
The analysis began with the window object, initially containing
over 500k objects. The filtering process effectively reduced this to
a manageable number for each property, see read (R) column in
Tab. 2, highlighting the tool’s ability to isolate relevant attributes.
The primary method for filtering used Expected Types, while the
Chosen Value heuristic was applied to the usernames. The time
required to finish the process was 8-10 hours for the tester.

Platform 3 Results For Platform 3, ten attributes modifiable
via the user interface were identified. The analysis started with
the window object, initially containing over one million objects.
The results prior to filtering can be seen in the Platform 3 read (R)
column of Tab. 2. The filtering process exclusively utilized Expected
Types, as no user-chosen values are applicable to the properties
analyzed. Due to the absence of certain attributes and entities found
in other platforms, the time required to analyze Platform 3 was
approximately 4 hours.

Despite the significant reduction in the number of objects in all
applications, the large average number remained primarily due to
the complex nature of 3D objects, specifically those related to the
Appearance attributes. These objects typically consist of multiple
components, such as polygons, shaders, textures, and materials,
contributing to the high count of objects detected by the tool.

5.4.2 Additional Objects. During the manual filtering process, we
identified objects in memory corresponding to attributes from our
threat model that were not modifiable through the UI. Examples of
these objects include user and instance ID strings, the user camera’s
FOV, and the visibility flags for other users. We indicated these
objects in the R column of Tab. 2 with a hollow circle.

5.4.3 Writable Objects.

Platform 1 Our tests in Platform 1 enabled us to evaluate the
writability of 12 attributes. Here, we primarily utilized the tech-
nique of replaying altered network messages. By replicating and
modifying network calls, we were able to confirm changes of state,
providing insights into the data synchronization process within
client-server architectures. The analysis duration was 12 to 15
hours.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Platform 2 In this virtual environment, we successfully assessed
the writability of nine specific attributes. Using our algorithms,
we directly modified JavaScript objects for spatial properties such
as Position and Rotation, with changes immediately visible in the
application. For attributes related to user settings and identities,
like Username and Appearance, more complex methods, including
function interception and call stack analysis, proved effective. The
analysis took between 12 to 15 hours.

Platform 3 InPlatform 3, we identified six writable attributes. We
had success through direct edits to object properties and network
manipulation. These methods allowed us to perform state-changing
operations, in some cases visible to all users except the designated
attacker or victim. For example, altering the position of a player
do not affect the victim’s client but is observable by all others. The
analysis was completed in 8 to 10 hours.

6 Attacks

The analysis in § 5 returned a list of attributes and the type of
access allowed to an attacker, i.e., read and write. In particular, for
writable attributes, § 5 identified how an attacker could modify that
attribute, e.g., via direct object modification, function updates, or
network messages. These results constitute the building blocks to
identify attacks, which we cover in this section.

Brainstorming Attack Possibilities Finding attacks given a
set of permissible object change operations is not trivial, and it is
fundamentally a creative and manual activity that deeply relies on
the expertise of the security researcher. In this paper, a team of two
researchers enumerated possible attacks in multiple brainstorming
sessions, setting as a goal the violation of one of the four security
properties, i.e., authenticity, integrity, confidentiality, and availabil-
ity, assuming the attacker can read and write the attributes listed
in Tab. 2. When one researcher verified that an attribute can be
tampered with an arbitrary value, they explored the attack poten-
tial by combining attribute operations. After enumerating possible
attacks, the researchers (i) implemented the attacks against the
platforms, (ii) set up the scene with the entities, e.g., victims and
objects, (iii) determined if the attack achieves the intended goals,
(iv) determined if the attack has side effects that could hinder its
effectiveness or impact, and (v) evaluate exploitability under our
thread model (e.g., threat model 2a or 2b).

Overview of the Results In total, we identified 10 attacks, out
of which we successfully implemented eight, ranging from au-
dio/video surveillance attacks, continuous user position tracking,
impersonation attacks, and experience tampering attacks. For each
attack and platform, we developed a JavaScript script that auto-
mates the entire attack process. Four of these attacks were executed
against Platform 2 and Platform 3 and all eight against Platform 1.
The attacks are summarized in Tab. 3.

Attack Descriptions Template We follow a strict template for
each attack. First, we summarize the attack. Then, we technically ex-
plain how the attack is performed and show the involved attributes.
Finally, we discuss risks and impact of the attack and discuss their
exploitability.

Andrea Mengascini, Ryan Aurelio, and Giancarlo Pellegrino

Reloc. Reloc.

(c) Targeted A/V surveillance (d) Victim-impostor swap

(f) Visual DoS
—— User 0
— User1l
User 2
N W

(g) Super Glue

(h) Continuous Position Tracking

Figure 3: Attack scenarios for an active attacker. The attacker
is in red. The victim is in green. In blue is a user in the social
circle of the victim.

6.1 Audio/Video Surveillance

The first attack allows an attacker to implement audio/video surveil-
lance on users in a metaverse. We distinguish two different variants
of attacks, exploiting different attributes. The first variant is un-
targeted, where the attacker places the camera and microphone
in an area of interest. The second variant is targeted, where the
attacker places the camera in the same position as the camera of
the targeted victim.

6.1.1 Untargeted A/V Surveillance via Camera Relocation. This at-
tack allows an attacker to covertly eavesdrop on conversations and
have a video feed of an area of a virtual environment. It achieves
that by moving the camera position to a selected area. As the posi-
tion of the camera and the avatar are not linked to one another, the
attacker’s avatar can remain in another location (Fig. 3a).

Technical Explanation This attack leverages the decoupling
of the camera, which carries the audio source, from the avatar’s
position. The attacker either a) edit directly the objects values or

The Big Brother’s New Playground

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Attack Platform Self Other Objects Instance
2
3
=]) %)
: : : '
5 @ gl = o 7 'é F§* 5 F§< E E —i; 2
S8 Z|lw 5 = E S ¢ » o = 2 o E g v o » 2 o 0 3 ofF 2
= S < L S O CEe) T >
Attack name S| EEE ERZ2ES gL EZRZELELETEZS| L T2 <2
Untargeted A/V Surv. — Camera (Fig.3a) | a | @ e 06 o W W
Untargeted A/V Surv. - Avatar (Fig. 3b) a | @ e 06 °o w
Targeted A/V Surveillance (Fig. 3c) a | @ e 0 o w W R R R
Continuous Position Tracking (Fig. 3h) | a,b [BE B BN) R R R R
Victim-Impostor Swap (Fig. 3d) a | @ O @ O W w R R W
Targeted Object Removal (Fig. 3e) ab| @ O @ N/A R \%%
Visual Obstructions (Fig. 3f) ab| @ O @ N/A R R w
Super Glue (Fig. 3g) ab| @ O @ NA R R/W

Table 3: List of attacks, type of attacker (active/passive), the attack scenario, the affected platform, and the attributes (read R

and write W).

b) manipulates network traffic to freeze their avatar in its current
position by capturing and resending its last known coordinates
through WebSocket traffic, making it appear stationary to other
users. Then, the attacker freely places their camera in a fixed area
of interest, enabling listening to the various conversations without
visual indication of their presence. This separation of audio and
visual presence exploits the writable attributes of the camera’s
position and rotation, allowing for surveillance tools.

Risks and Impact We implemented and verified the effective-
ness of this attack in all three platforms. The main risk is unautho-
rized access to private conversations and interactions, breaching
user privacy and potentially gathering sensitive information with-
out consent. This could be particularly damaging in environments
where users assume a level of privacy and confidentiality.

Exploitability This attack manipulates the objects identified
through our methodology, resulting in the display of the camera
view and the relaying of audio to the browser used to execute
the attack. An attacker can execute this attack under the scenario
shown in Fig. 2.(a). However, when the same manipulations are
executed by the benign user of the attack scenario Fig. 2.(b), their
user experience will be disrupted, making these manipulations
insufficient to carry out the attack. Although we were unable to
find a non-disruptive alternative, we cannot rule out the possibility
that such a variant exists.

6.1.2 Untargeted A/V Surveillance via Attacker’s Avatar Relocation.
This attack achieves the same result as the previous one. However,
this attack exploits the writable avatar position attributes in virtual
environments, allowing an attacker to render their avatar invisible
by positioning it outside normal interaction boundaries. By manip-
ulating the avatar’s position attributes, the attacker can effectively
make their avatar disappear or become hidden from other users.
This is achieved by moving the avatar outside the spatial bound-
aries of the metaverse map, such as outside a room’s walls or above
the ceiling, thereby making it invisible to other users (Fig. 3b).

Technical Explanation The attack involves accessing the avatar’s
position attribute within the virtual reality environment’s client.
The attacker identifies the avatar’s current position and then mod-
ifies these coordinates to values that position the avatar outside
the usual boundaries of the map. This manipulation is achieved by

adding offsets to the current position, ensuring the avatar moves
to a location where it cannot be seen by others.

Risks and Impact We implemented and verified the effective-
ness of this attack in all three platforms. The capability to render
avatars invisible presents significant risks on platforms like Plat-
form 2 and Platform 1, where avatar position attributes are directly
modifiable. Key risks include the same as the previous attack. In
addition, hiding the avatar includes evasion of user observation,
which can facilitate unauthorized and harmful activities unseen by
others. This vulnerability can serve as a foundation for covert op-
erations within these virtual spaces, allowing attackers to conduct
passive attacks that can result in surveillance.

Exploitability As with the previous attack, the manipulations
in this attack disrupt the user who is unknowingly running them
(see the attack scenario in Fig. 2.(b)). The current implementation
of this attack is practical only in the scenario depicted in Fig. 2.(a).

6.1.3 Targeted A/V Surveillance. This is similar to the untargeted
A/V surveillance attack. However, the attacker now positions their
camera in the same position as the victim’s. The attacker monitors
the victim’s position and updates the cameras accordingly in real-
time. Such an attack allows the attacker to hijack the point of view
of another user’s avatar, seeing through their perspective without
moving their own avatar (Fig. 3c).

Technical Explanation In Platform 2 and Platform 1, this at-
tack is executed by manipulating WebSocket traffic to separate the
control of the attacker’s camera from their avatar and align it with
the target’s camera viewpoint. This involves key attributes such as
the attacker’s camera position and rotation, along with the target’s
ID, position, and rotation. Initially, the attack halts updates of its
movements to other clients to prevent the avatar from mirroring
camera movements. Concurrently, the attacker’s camera position
and rotation are programmatically adjusted in real-time to syn-
chronize with the target’s camera in each frame. This adjustment
mirrors the target’s view precisely, creating the illusion that the
attacker is seeing from the target’s perspective. In Platform 3, the
approach differs slightly due to its camera mechanics, which always
point towards the user. Here, both the camera position and user
position objects are directly edited to ensure they always align with
the victim’s rotation. By positioning the attacker’s avatar far away

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

from the victim, it remains hidden from the victim’s view. How-
ever, the attacker can see from the victim’s perspective, effectively
hijacking their viewpoint.

Risks and Impact We conducted this attack and verified its
severity on all three platforms. Such an attack poses severe privacy
risks by allowing unauthorized access to a user’s visual and spatial
perspective. Additionally, when compared to the untargeted version,
this variant is significantly more severe as it could pave the way for
new and more pervasive safety concerns perpetrated by abusive
partners and stalkers against vulnerable user groups, aiming to
harass, scare, and threaten them.

Exploitability As with other attacks in this category, this at-
tack currently manipulates the client state, rendering it applicable
primarily under the scenario depicted in Fig. 2.(a).

6.2 Continuous Users Position Tracking

On top of A/V surveillance, an attacker can also track the real-
time positions of all users in a metaverse room. By recording these
positions along with timestamps, the data can later be used to plot
interactions and create a heatmap of connections between players.
Technical Explanation The data collection is executed by initi-
ating a position-tracking function that captures the positions and
usernames of all players in the environment at regular intervals.
This function accesses and iterates over player entities, storing each
player’s username and position at regular intervals. The collected
data can be processed both offline and online (while the attack is
happening). Fig. 3h illustrates the position-tracking activity that an
attacker can perform against three users inside a virtual space.
Risks and Impact We executed this attack in all platforms. The
primary risk of this attack is the potential breach of privacy by
exposing user movement patterns without their consent. The data
gathered can be used to infer user behaviors, interactions, social
connections, and habits within virtual spaces.

Exploitability This attack operates without requiring a client
interface to display outputs, making it covert and compatible with
both attack scenarios. In the case of a remote attacker, as depicted
in Fig. 2.(b), cross-origin requests can be utilized to exfiltrate data.

6.3 Impersonation Attacks

6.3.1 Victim-Impostor Swap. This attack involves an attacker im-
personating another user by 1) changing their own avatar’s name
and appearance to that of the target, 2) teleporting the target user
to an out-of-bounds location, and 3) moving the attacker to the
original victim’s position. The final goal of this attack is to replace
a victim with the attacker without others noticing (Fig. 3d).

Technical Explanation The attack manipulates WebSocket com-
munications to alter the attacker’s username and avatar to resemble
another user’s while concurrently relocating the other user. The
attack process begins with the attacker obtaining the unique ID of
another player. Following this, the attacker overrides WebSocket
functions that are responsible for message handling. This intercep-
tion facilitates key manipulations: 1) extracting critical information
from the victim such as their position, rotation, appearance, and
nametag by matching messages containing victim’s ID; 2) altering
the attacker’s own username and avatar to exactly match that of
the target; 3) teleporting the victim to an out-of-bounds location

Andrea Mengascini, Ryan Aurelio, and Giancarlo Pellegrino

to isolate them from the main interaction space; 4) the attacker
relocates to where the victim was originally positioned, thereby
assuming the victim’s place in the virtual environment. This se-
quence of actions enables the attacker to seamlessly take over the
victim’s identity without alerting other users.

Risks and Impact We conducted this attack on Platform 1. How-
ever, we could not reproduce it on Platform 2 because we could not
find a way to write the other users’ position attributes. On Platform
3, while we can alter other users position, usernames are created
at sign up and cannot be changed, so the attack is not possible.
A successful attack results in user impersonation and dislocation,
potentially facilitating an attacker’s use of social engineering tech-
niques.

Exploitability Similarly to the A/V surveillance attacks, this
attack alters the client state. Therefore, this attack is currently
possible under the scenario illustrated in Fig. 2.(a).

6.4 Metaverse Experience Tampering

Some Metaverses can allow users to add objects to the scene. For
example, Platform 1 offers catalogs of objects that users can browse
and add to the scene or load via URLs. These objects play an im-
portant role in the various experiences. For example, they can be
used for decorating a room as well as key elements in the logic of a
game, such as marking a path already explored in a maze immersive
game, e.g., the Maze Challenge of Platform 1. Other platforms, like
Platform 3, do not offer object spawning capabilities, making this
category of attacks not feasible. In this section, we present attacks
that leverage these objects (Fig. 3e — Fig. 3g).

6.4.1 Targeted Objects Removal. The first attack targets the objects
a specific user places in the scene. The attacker continuously detects,
and teleports the objects a specific player creates to an out-of-
bounds location as soon as they are spawned (Fig. 3e).

Technical Explanation The attack is executed by setting up
WebSocket monitoring to detect object creation events. A custom
function intercepts WebSocket messages that indicate the creation
of new objects by the targeted player. This involves overriding the
WebSocket’s functions to manipulate data. The steps include detect-
ing the creation event of an object by the target player, extracting
the object’s unique ID, and constructing a new WebSocket message
that changes the object’s position to teleport it out of bounds. This
method relies on identifying the user and object creator by their
IDs and manipulating the location of the object.

Risks and Impact We tested this attack against Platform 1. Such
an attacker can severely disrupt the gameplay or interactive expe-
riences of targeted users by rendering their ability to place and use
objects in the environment ineffective. This disrupts the player’s
ability to interact meaningfully within the environment, resulting
in a denial of service for the user’s virtual objects.
Exploitability Our analysis confirms that this attack is viable
under both attack scenarios explained in Fig. 2 since it does not
affect the client that executes it. The script that removes objects
from the scene can be launched directly from an attacker’s client
or executed covertly via a benign user’s client.

6.4.2 Visual Obstructions. This attack exploits the functionality
within virtual environments that allows dynamic control over object

The Big Brother’s New Playground

positioning relative to user viewpoints. An attacker can deploy
one or multiple objects, read the position of a victim’s camera,
and use a function to continuously update the object’s position to
coincide with the camera’s view (Fig. 3f). This results in rendering
the player “blind” by obstructing their visual field entirely, thus
significantly degrading the user experience. Not only does this
impair the victim’s ability to navigate and interact within the virtual
environment, but it also makes their avatar unrecognizable to other
players, further isolating the victim.

Technical Explanation The attack uses the manipulation of
object positioning mechanics in virtual environments, positioning
at the victim’s camera movements. The attacker uses a function
that automatically spawns objects directly in front of the victim’s
camera. This script continually queries the current position of the
victim’s camera and adjusts the coordinates of the objects, ensuring
they always remain in the direct line of sight.

Risks and Impact We implemented and verified the effective-
ness of this attack in Platform 1. The primary risk of this attack
is the degradation of user experience through visual impairment,
which can lead to disorientation and degradation of the experience.
Additionally, by obscuring the victim’s avatar, the attack can isolate
the victim from social interactions within the virtual space, effec-
tively rendering them unrecognizable to other users. This not only
disrupts individual gameplay or participation but also poses broader
implications for social dynamics and safety in virtual environments.

Exploitability This attack can be executed under both attack
scenarios of Fig. 2. The script that obstructs a victim’s visibility can
be launched directly from an attacker’s client or executed covertly
via a benign user’s client.

6.4.3 Super Glue. In this attack, the attacker places transparent
objects in the scene for each object that a user places in the scene.
The attacker then continuously updates the position of the trans-
parent object to match the position of the object placed by the user.
This results in the user being unable to move the object, as the
transparent object will always be superimposed (Fig. 3g).

Technical Explanation A function continuously checks the
objects in the scene and if it detects a new object placed by the user,
it spawns a transparent object at the same position. The attacker
then uses a loop function to update the position of the transparent
object to always match the position of the object placed by the user.
This results in the user being unable to move the object, as it will
return to the initial position (on top of the user object) as soon as
the user tries to move it.

Risks and Impact We implemented and verified the effective-
ness of this attack in Platform 1. This attack can hinder the user’s
ability to interact with the environment by rendering objects im-
movable. It affects only the designated user, not the client executing
the attack, and can be carried out from either the attacker’s or a
benign user’s client, as shown in Fig. 2.

6.5 Partially Feasible Attacks

Various attacks were conceived and tested, yet they failed to func-
tion as intended. This section presents our attempts, the expected
impacts, and the technical explanation that prevented their success.

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

6.5.1 Teleporting Players to Arbitrary Location. In this attack, we
attempted to manipulate the position of a target player by modifying
the WebSocket message that contains the player’s coordinates. The
modification included the target’s ID and the desired coordinates
for teleportation. We teleported the victim to a specified location;
however, teleporting the victim froze their character. The only
option for the victim is to rejoin the metaverse room. Freezing
arose because the platform reassigned the owner ID of the victim’s
avatar to that of the attacker’s ID during the teleportation process.
Consequently, the victim’s client no longer recognized the avatar
as its own, blocking any movement commands from the victim.
While freezing is acceptable for attacks like the Victim-Impostor
Swap, it prevent exploring the full attack potential of teleporting,
including causing motion sickness by injecting visual vibrations or
hijacking users’ trajectories (such as in the human joystick [4]).

6.5.2 Controlled Camera Movement. This attack aimed to manipu-
late the camera’s position or rotation directly, independent of the
avatar. This manipulation could induce disorientation or dizziness
in the victim or facilitate social engineering attacks by deceiving
the victim about their actual environment. For example, it makes
users believe they are acting on some object in a specific room while
they are interacting with another object elsewhere. However, we
found that the camera’s position and rotation are tied to those of the
avatar. Thus, altering the camera position without simultaneously
changing the avatar’s position or orientation proved ineffective.

6.5.3 Reasons for Failure. The failure of certain attacks in our study
is primarily attributed not to robust client-side security measures,
but to specific limitations imposed by the server-side architecture
or the absence of certain features in the virtual environments.

Missing Features In environments like Platform 3, the absence
of user-editable objects directly prevents the execution of object-
related attacks (Fig. 3e — Fig. 3g). This is indicated as N/A (not
applicable) in Tab. 3, as the platform does not support features
necessary for these attacks.

Property Modification Failures Some properties were not suc-
cessufully altered in the state. For instance, in Platform 2, attempts
to alter avatar or object positions through network updates were
not propagated by the server. Without access to the server-side
code, it is unclear whether this results from intentional security
measures or merely design side-effects. The non editability of a)
other users avatar and b) object location stopped us to execute some
attacks (Fig. 3d - Fig. 3g) on Platform 2.

7 Discussion

7.1 Results of our Assessment

In this section, we discuss a few aspects and implications of our
security assessment, focusing on the severity of attacks, vulnerabil-
ities, comparisons with multiplayer gaming platforms, and specific
design choices made by Meta.

Severity of Attacks and New Possible Malicious Actors. Our research
identifies not only individual-targeted attacks but broader, severe
threats affecting user privacy, availability, and the integrity of the
environment. In social-centric virtual spaces like metaverses, such

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

vulnerabilities could be exploited to stalk or abuse users. An at-
tacker can concretely use the scripts in § 6 in two scenarios. First, a
malicious user runs them in their own browser while being in the
environment. Second, the attacker does not join the environment
but manages to execute arbitrary JS on the client of a benign user
(e.g., via XSS vulnerability). As metaverses gain traction virtual
offices or business meetings, they may attract more sophisticated
attackers, including organizations engaging in corporate espionage
or state-sponsored entities gathering intelligence. This potential for
diverse misuse underlines the critical need for robust security mea-
sures tailored to the evolving landscape of virtual environments.

Vulnerabilities in Metaverse Platforms. The complexity of security is-
sues in metaverses necessitates a multifaceted mitigation approach,
including code patches and fundamental redesigns of critical compo-
nents. From our security assessment, we can group vulnerabilities
into two violations of secure engineering principles. First, the need-
to-know principle is often breached [12, 31], with clients accessing
excessive information, undermining the system’s confidentiality
(i.e., continuous users’ position tracking). Second, many platforms
lack or poorly perform server-side validation of global state up-
dates [2, 8], allowing attackers to manipulate the environment.

Adapting Attack Models for Web Metaverses. Attacks like those we
proposed are also present in gaming, even if with different objec-
tives. Web applications, however, continuously fight vulnerabili-
ties that allow the execution of malicious JavaScript code, such
as XSS, script gadgets, and DOM clobbering. This battle against
web-specific threats is far from over and remains an ongoing chal-
lenge. Consequently, the potential severity of these attacks could be
greater on web-based platforms, where attackers might also exploit
these code execution vulnerabilities (refer to the bottom schematic
in Fig. 3) to execute attacks more covertly.

Comparison with Multiplayer Gaming Platforms. The gaming in-
dustry’s reliance on client hardening, such as restricting access to
memory and network stacks through anti-cheat technologies [18],
offers an interesting parallel to metaverse platforms. Anti-cheat
techniques have historically initiated a cat-and-mouse game, where,
eventually, game cheaters have the upper hand. Additional coun-
termeasures exist, such as obfuscation, hiding data structures, and
memory integrity checks. However, they all serve as temporary
deterrents against attacks and are not long-term solutions.

Recently, the use of secure enclave technologies, e.g., SGX [1, 10],
has shown potential in mitigating data tampering, suggesting a
promising avenue for enhancing security in metaverse environ-
ments. Future research should investigate how such technologies
could be adapted from gaming and the web to virtual worlds, espe-
cially given the increasing interest from strong adversaries.

Transferring Existing Defenses to the Web Platform. Transferring
gaming anti-cheat measures to web-based metaverse platforms is
challenging due to the limitations of web browsers. Unlike gam-
ing systems, where anti-cheat mechanisms are integrated deeply
with the operating system to monitor and restrict memory access,
browsers lack such in-depth system control. Such anti-cheat sys-
tems would safeguard against unauthorized access and manipula-
tion of data, thus preventing malicious interference. However, while
securing JavaScript execution could enhance defense, it requires

Andrea Mengascini, Ryan Aurelio, and Giancarlo Pellegrino

careful consideration of potential trade-offs. Hardening JavaScript
execution to prevent tampering could make malicious scripts harder
to detect, monitor, and mitigate, enabling more covert and poten-
tially dangerous attacks. Therefore, the trade-off between securely
growing these platforms and potentially worsening security prob-
lems in the web ecosystem must be carefully considered.

Transferring Client-side Logic to the Server. Transferring all security
responsibilities to the cloud by processing graphics on the server
side, akin to game streaming platforms, represents another poten-
tial strategy. Meta, as we discoverd by analyzing their platform, has
already adopted this method in their web metaverse [30], shifting
all client-side logic to the server and using the browser merely
to stream video and gather user inputs. This approach addresses
security concerns by centralizing control but introduces challenges,
such as the need for low-latency network connections to prevent
user experience degradation. While effective for a resource-rich
organization like Meta, it remains impractical for smaller entities,
highlighting a divide in potential security strategies based on or-
ganizational resources. This disparity raises questions about such
models’ scalability and applicability across different sizes and types
of organizations operating within the metaverse.

7.2 Limitations

Threat Modeling and Testing. Our threat modeling targets specific
attributes of an environment, e.g. avatar, cameras or objects, as-
sessing how a malicious user could access and manipulate these at-
tributes. This helps identify vulnerabilities where the need-to-know
principle is violated or where tampered state updates are accepted.
However, our approach does not cover all possible functionalities
of the platforms we tested. For example, we do not assess vulnera-
bilities in functionalities such as uploading custom compressed 3D
objects or chat systems, which may be susceptible to issues like XSS,
SQL injections, unrestricted file uploads or denial-of-service attacks
from uncontrolled file decompression. These functionalities remain
untested and are outside the scope of our current methodology.

Operating within the Browser. Our tool operates within the browser
by inspecting JavaScript objects in the browser’s engine, which
imposes limitations on the size of memory that can be analyzed.
A significant limitation could surface when duplicating and com-
paring the global object of larger applications, which could contain
millions of objects. This process can overwhelm the main JavaScript
thread, potentially causing timeouts and resulting in users being
disconnected for inactivity. To address this, one might consider
alternative methods such as using web workers or promises to keep
the main thread responsive. Alternatively, conducting the analy-
sis outside of the browser, directly within the browser’s memory
address space, could circumvent some of these limitations.

8 Related Works

Recently, Garrido et al. [11] proposed a comprehensive threat model
for social virtual reality applications, identifying other users as po-
tential adversaries who receive data streams. However, this model
does not address the possibility of compromising these streams or
client-side data structures, thereby limiting the scope of potential

The Big Brother’s New Playground

attackers to fingerprinting or inferring sensitive information. In-
deed, substantial works [16, 17, 19] focused on the privacy aspects
of virtual reality, primarily concerning the identification and pro-
filing—or fingerprinting—of users and their environments. These
studies highlight ongoing concerns about data privacy within VR
platforms. On the security front, researchers [29] have shown that
exploits based on known vulnerabilities in other systems, such as
XSS, are still viable in these virtual environments. More recently, ef-
forts have shifted toward exploring intrinsic vulnerabilities unique
to shared virtual worlds. For instance, Slocum et al. [26] developed
a threat model specifically for shared states in augmented reality.
Their work analyzes how read and write functions can be tampered
with to manipulate data, allowing unauthorized access to otherwise
inaccessible holograms or to place holograms in restricted areas.
Similarly, Cheng et al. [6] explore the Ul libraries for developing
augmented reality attacks that leverage the rendering properties of
the Ul to, for example, hide an object or create a clickjacking attack.

9 Conclusion

In this paper, we conducted a detailed security analysis of metaverse
platforms, focusing on manipulating in-memory data structures
by malicious users. We explored the security implications on three
popular platforms. Our findings reveal significant vulnerabilities
that could enable attacks like unauthorized audio/video surveillance
or continuous user position tracking, posing substantial risks within
these virtual environments. This analysis underscores the need for
more robust security measures to safeguard user interactions and
prevent exploitation. As metaverses gain popularity, prioritizing
the security and privacy of their users is crucial to maintaining
safe and trustworthy virtual communities. This work serves as a
foundation for future research and development aimed at enhancing
the robustness of security frameworks in the metaverse.

References

[1] Erick Bauman and Zhiqiang Lin. 2016. A Case for Protecting Computer Games
With SGX. In Proceedings of the 1st Workshop on System Software for Trusted
Execution. https://doi.org/10.1145/3007788.3007792

Darrell Bethea, Robert A. Cochran, and Michael K. Reiter. 2011. Server-side
verification of client behavior in online games. ACM Trans. Inf. Syst. Secur. (2011).
https://api.semanticscholar.org/CorpusID:188945

[3] Elie Bursztein, Mike Hamburg, Jocelyn Lagarenne, and Dan Boneh. 2011. Open-
Conflict: Preventing Real Time Map Hacks in Online Games. In 2011 IEEE Sym-
posium on Security and Privacy. 506-520. https://doi.org/10.1109/SP.2011.28

[4] Peter Casey, Ibrahim Baggili, and Ananya Yarramreddy. 2021. Immersive Virtual
Reality Attacks and the Human Joystick. IEEE Transactions on Dependable and
Secure Computing (2021), 550-562. https://doi.org/10.1109/TDSC.2019.2907942

[5] IEEE VR Chairs. 2020. Online IEEE VR 2020. https://web.archive.org/web/
20230620105759/https://ieeevr.org/2020/online/. (Accessed on 04/27/2024).

[6] Kaiming Cheng, Arkaprabha Bhattacharya, Michelle Lin, Jaewook Lee, Aroosh
Kumar, Jeffery F Tian, Tadayoshi Kohno, and Franziska Roesner. 2024. When the
User Is Inside the User Interface: An Empirical Study of UI Security Properties in
Augmented Reality. (2024). https://api.semanticscholar.org/CorpusID:263913047

[7] Minyeop Choi, Gihyuk Ko, and Sang Kil Cha. 2023. BotScreen: Trust Everybody,
but Cut the Aimbots Yourself. In 32nd USENIX Security Symposium.

[8] Robert A. Cochran and Michael K. Reiter. 2013. Toward Online Verification of
Client Behavior in Distributed Applications. In Network and Distributed System
Security Symposium. https://api.semanticscholar.org/CorpusID:5918500

[9] DEF CON. 2022. DEF CON Groups VR Events. https://web.archive.org/web/
20240320214525/https://www.dcgvr.org/. (Accessed on 04/27/2024).

[10] Saba Eskandarian, Jonathan Cogan, Sawyer Birnbaum, Peh Chang Wei Brandon,
Dillon Franke, Forest Fraser, Gaspar Garcia, Eric Gong, Hung T. Nguyen, Taresh K.

[2

CCS 24, October 14-18, 2024, Salt Lake City, UT, USA

Sethi, Vishal Subbiah, Michael Backes, Giancarlo Pellegrino, and Dan Boneh.
2019. Fidelius: Protecting User Secrets from Compromised Browsers. In 2019 IEEE

Symposium on Security and Privacy (SP). https://doi.org/10.1109/SP.2019.00036
Gonzalo Munilla Garrido, Vivek Nair, and Dawn Song. 2024. SoK: Data Privacy

in Virtual Reality. Proceedings on Privacy Enhancing Technologies (2024). https:

//petsymposium.org/popets/2024/popets-2024-0003.php

Kang Li, Shanshan Ding, Douglas D. McCrearyD.D. McCreary, and Steve Webb.

2004. Analysis of state exposure control to prevent cheating in online games.

In International Workshop on Network and Operating System Support for Digital

Audio and Video. https://api.semanticscholar.org/CorpusID:26210932

[13] Junsu Lim, Hyeonggeun Yun, Auejin Ham, and Sunjun Kim. 2022. Mine Yourself!:

A Role-playing Privacy Tutorial in Virtual Reality Environment. CHI Conference

on Human Factors in Computing Systems Extended Abstracts (April 2022), 1-7.

https://doi.org/10.1145/3491101.3519773

Meta. 2024. Explore worlds in Meta Horizon Worlds. https://www.meta.com/en-

gb/help/quest/articles/horizon/explore-horizon-worlds/explore-worlds-

horizon/. (Accessed on 07/18/2024).

VRChat Metrics. 2024. 100k+ Concurrent Users. https://metrics.vrchat.

community/?orgld=1&from=1708827218205&t0=1708850191393. (Accessed on

04/29/2024).

Mark Roman Miller, Fernanda Herrera, Hanseul Jun, James A. Landay, and

Jeremy N. Bailenson. 2020. Personal identifiability of user tracking data during

observation of 360-degree VR video. Scientific Reports 10, 1 (Oct. 2020), 17404.

hitps://doi.org/10.1038/541598-020-74486-y

Robert Miller, Natasha Kholgade Banerjee, and Sean Banerjee. 2022. Combining

Real-World Constraints on User Behavior with Deep Neural Networks for Virtual

Reality (VR) Biometrics. In 2022 IEEE Conference on Virtual Reality and 3D User

Interfaces (VR). 409-418. https://doi.org/10.1109/VR51125.2022.00060

Christian Monch, Gisle Grimen, and Roger Midtstraum. 2006. Protecting online

games against cheating. In Network and System Support for Games. https://api.

semanticscholar.org/CorpusID:3067628

[19] Vivek Nair, Wenbo Guo, Justus Mattern, Rui Wang, James F. O’Brien, Louis
Rosenberg, and Dawn Song. 2023. Unique Identification of 50,000+ Virtual Reality
Users from Head & Hand Motion Data. (2023). http://arxiv.org/abs/2302.08927

[20] Vivek Nair, Gonzalo Munilla Garrido, Dawn Song, and James O’Brien. 2023.

Exploring the Privacy Risks of Adversarial VR Game Design. PoPETs (2023).

https://doi.org/10.56553/popets-2023-0108

Kelsey E Onderdijk, Lies Bouckaert, Edith Van Dyck, and Pieter-Jan Maes. 2023.

Concert experiences in virtual reality environments. Virtual Reality (2023).

Seonghyun Park, Adil Ahmad, and Byoungyoung Lee. 2020. BlackMirror: Pre-

venting Wallhacks in 3D Online FPS Games. Conference on Computer and Com-

munications Security (2020). https://doi.org/10.1145/3372297.3417890

[23] Ralph Schroeder. 2002. Social interaction in virtual environments: Key issues,
common themes, and a framework for research. In The social life of avatars:
Presence and interaction in shared virtual environments. Springer, 1-18.

[24] Adam Shostack. 2014. Threat modeling: Designing for security. John Wiley &

Sons.

Similaweb. 2024. Website Traffic - Check & Analyze Any Website. https://www.

similarweb.com/. (Accessed on 04/29/2024).

[26] Carter Slocum, Yicheng Zhang, Erfan Shayegani, Pedram Zaree, Nael Abu-
Ghazaleh, and Jiasi Chen. 2024. That Doesn’t Go There: Attacks on Shared
State in Multi-User Augmented Reality Applications. (2024). https://www.
usenix.org/conference/usenixsecurity24/presentation/slocum

[27] Three.js. 2013. https://threejs.org/docs/#api/en/. (Accessed on 04/27/2024).

[28] Rahmadi Trimananda, Hieu Le, Hao Cui, Janice Tran Ho, Anastasia Shuba, and
Athina Markopoulou. 2022. OVRseen: Auditing Network Traffic and Privacy
Policies in Oculus VR. In 31st USENIX Security Symposium. https://www.usenix.
org/conference/usenixsecurity22/presentation/trimananda

[29] M. Vondrek, Ibrahim Baggili, Peter Casey, and Mehdi Mekni. 2022. Rise of the

Metaverse’s Immersive Virtual Reality Malware and the Man-in-the-Room Attack

& Defenses. CoSe (2022). https://doi.org/10.1016/j.cose.2022.102923

Horizon Wolds. 2022. Meta Horizon. https://web.archive.org/web/

20240426084415/https://horizon.meta.com/. (Accessed on 04/27/2024).

Amir Yahyavi, Kévin Huguenin, Julien Gascon-Samson, J6rg Kienzle, and Bettina

Kemme. 2013. Watchmen: Scalable Cheat-Resistant Support for Distributed Multi-

player Online Games. 2013 IEEE 33rd International Conference on Distributed

Computing Systems (2013). https://api.semanticscholar.org/CorpusID:11156747

[32] Jeff Yan and Brian Randell. 2005. A systematic classification of cheating in online
games. In Proceedings of 4th ACM SIGCOMM workshop on Network and system
support for games. 1-9.

[33] Su-Yang Yu, Nils Y. Hammerla, Jeff Yan, and Péter Andrés. 2012. A statistical
aimbot detection method for online FPS games. International Joint Conference on
Neural Networks (2012). https://api.semanticscholar.org/CorpusID:14154557

[11

[12

[14

[15

[16

[17

(18

[21

[22

I
2

[30

[31

https://doi.org/10.1145/3007788.3007792
https://api.semanticscholar.org/CorpusID:188945
https://doi.org/10.1109/SP.2011.28
https://doi.org/10.1109/TDSC.2019.2907942
https://web.archive.org/web/20230620105759/https://ieeevr.org/2020/online/
https://web.archive.org/web/20230620105759/https://ieeevr.org/2020/online/
https://api.semanticscholar.org/CorpusID:263913047
https://api.semanticscholar.org/CorpusID:5918500
https://web.archive.org/web/20240320214525/https://www.dcgvr.org/
https://web.archive.org/web/20240320214525/https://www.dcgvr.org/
https://doi.org/10.1109/SP.2019.00036
https://petsymposium.org/popets/2024/popets-2024-0003.php
https://petsymposium.org/popets/2024/popets-2024-0003.php
https://api.semanticscholar.org/CorpusID:26210932
https://doi.org/10.1145/3491101.3519773
https://www.meta.com/en-gb/help/quest/articles/horizon/explore-horizon-worlds/explore-worlds-horizon/
https://www.meta.com/en-gb/help/quest/articles/horizon/explore-horizon-worlds/explore-worlds-horizon/
https://www.meta.com/en-gb/help/quest/articles/horizon/explore-horizon-worlds/explore-worlds-horizon/
https://metrics.vrchat.community/?orgId=1&from=1708827218205&to=1708850191393
https://metrics.vrchat.community/?orgId=1&from=1708827218205&to=1708850191393
https://doi.org/10.1038/s41598-020-74486-y
https://doi.org/10.1109/VR51125.2022.00060
https://api.semanticscholar.org/CorpusID:3067628
https://api.semanticscholar.org/CorpusID:3067628
http://arxiv.org/abs/2302.08927
https://doi.org/10.56553/popets-2023-0108
https://doi.org/10.1145/3372297.3417890
https://www.similarweb.com/
https://www.similarweb.com/
https://www.usenix.org/conference/usenixsecurity24/presentation/slocum
https://www.usenix.org/conference/usenixsecurity24/presentation/slocum
https://threejs.org/docs/#api/en/
https://www.usenix.org/conference/usenixsecurity22/presentation/trimananda
https://www.usenix.org/conference/usenixsecurity22/presentation/trimananda
https://doi.org/10.1016/j.cose.2022.102923
https://web.archive.org/web/20240426084415/https://horizon.meta.com/
https://web.archive.org/web/20240426084415/https://horizon.meta.com/
https://api.semanticscholar.org/CorpusID:11156747
https://api.semanticscholar.org/CorpusID:14154557

	Abstract
	1 Introduction
	2 Background
	2.1 Metaverse Web Client
	2.2 Threat Model

	3 Methodology Overview
	3.1 Metaverse Platforms Under Test
	3.2 Overview of our Security Assessment
	3.3 Ethics Considerations

	4 Entity-Attribute Model
	4.1 Construction
	4.2 Components

	5 Objects in Memory
	5.1 Memory Snapshot Diffing
	5.2 Mapping Objects to Attributes
	5.3 Writable Objects
	5.4 Results

	6 Attacks
	6.1 Audio/Video Surveillance
	6.2 Continuous Users Position Tracking
	6.3 Impersonation Attacks
	6.4 Metaverse Experience Tampering
	6.5 Partially Feasible Attacks

	7 Discussion
	7.1 Results of our Assessment
	7.2 Limitations

	8 Related Works
	9 Conclusion
	References

