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Abstract—More and more immersive environments support
third-party applications, leading to concerns about the trust-
worthiness of user interfaces (Uls), which attackers could
exploit, endangering users. Although security warnings at-
tempt to safeguard users by highlighting risks, most studies
primarily target security indicators as usable intervention for
app transitions in virtual reality. Our research broadens this
focus by providing a systematic, data-driven investigation of
security warnings for third-party applications in immersive
environments. We analyzed a decade’s worth of top VR
interactions and security conference findings and assessed
the top 10 free VR applications from two leading stores each.
From our design process, we implemented four warnings.
Through two user studies involving 61 participants, we
measured their responses to these warnings during virtual
object interactions. Our findings indicate that a red glow
on an object was the most effective warning, frequently
associated with danger, while pop-up warnings were the least
effective.

1. Introduction

The tremendous growth of immersive technology is
reshaping the way users perceive and interact with ap-
plication software: While traditional user interfaces (UIs)
made of buttons and icons still exists, immersive envi-
ronments increasingly leverage virtual reality objects that
users interact via hand gestures in virtual or mixed real-
ity environments. More immersive systems now support
third-party applications [28]], [65] that an attacker can
use to superimpose visual elements or display harmful
content [[67], [[71]], [[152], deceiving users into insecure
interactions and resulting in, for example, password theft
or malware download [|152].

An existing approach to tackle UI trustworthiness
concerns is using security warnings, which traditionally
are trusted Ul elements controlled by the system — that
significantly reduce the incidence of insecure interactions
by informing users about risks and introducing friction to
encourage safer choices. In some cases, such as HTTPS
warnings in browsers, blocking access outright is imprac-
tical; instead, warnings allow users to make informed
decisions about proceeding despite potential risks. Prior
work has extensively explored security warnings in web
applications, investigating the design space, ranging from
passive warnings like secret images embedded in HTML
pages [29] to active interstitial messages breaking users’

workflows [4], as well as their effectiveness when visiting
malicious pages [4]], [33]] and those delivered over inse-
cure connections [4f], [42], [120]], [136]. Only recently,
the research community has started focusing on security
warnings in immersive systems, proposing visual and
haptic indicators to warn users about potential risks when
interacting with static, well-defined, cross-applications Ul
elements, such as online ads [67] and Metaverse hy-
perlinks when moving between virtual applications [S3],
[[158]. Unfortunately, recent works have shown that risks
also exist when users interact with Ul elements that are
specific to the application logic, such as PIN pads, by
placing a malicious object around a benign one to grab
user input for click-jacking attacks [23]], snooping on user
interactions with invisible objects to steal secrets [23|] or
fingerprint users [98].

Research Questions In this paper, we focus on designing
and testing security warnings to protect users when in-
teracting with seemingly benign UI elements within an
immersive environment. Our study operates within the
VR space of the XR continuum [94f], where the entire
environment is recreated inside the headset. Since creating
new warning is not a trivial task, we follow a data-driven
approach to design warnings, drawing from academic
literature and UI designs in real immersive applications,
implementing those that can be supported by existing
consumer-grade devices and cannot be easily bypassed
by attackers. Then, we test the warnings’ noticeability,
comprehension (user study 1), and final effectiveness (user
study 2). More specifically, in this paper, we address the
following research questions:

« RQ1: Design Space What could be the designs of se-
curity warning systems in immersive environments?
What designs are practically viable using consumer-
grade devices?

« RQ2: Initial User Response How do users process
and respond to immersive warnings?

« RQ3: Behavioral Response How effective are the
considered designs in minimizing interactions with
insecure objects?

Our Study Firstly, we conducted a comprehensive lit-
erature review to explore the design space of security
warning systems in immersive environments (RQ1). We
examined the past decade’s literature from leading VR
interaction conferences (ACM CHI and IEEE VR) and
reviewed the top 20 free VR applications from the Oculus
Quest Store [90] and Steam [133]] to identify interaction
modalities and feedback methods suitable for presenting



warnings. We covered all works published in the top
security and privacy and Human-Computer Interaction
(i.e., IEEE S&P, USENIX Security, ACM CCS, NDSS,
ACM CHI, SOUPS, and PETS) conferences of the last
ten years to identify effective warnings for potential haz-
ards. By combining VR interactions, security advice from
conferences, and our threat model, we designed secure
warnings for VR systems. Secondly, to understand the
initial user response (RQ2) and behavioral effectiveness
(RQ3) of these designs, we conducted two different user
studies. We recruited 61 participants to evaluate how users
perceive the warnings and how these warnings influence
their hazard-related attitudes, beliefs, and behavior.
Insights From 99 papers, we identified the possible inter-
action modalities and warning design strategies, which led
to the identification of 11 potential designs. However, only
three of these designs are viable as they are not trivially
vulnerable to attacks (e.g., spoofing or tampering) and can
be implemented using consumer-grade VR devices. From
these potential designs, we derived four concrete warn-
ings: 1) a red glow decorating insecure objects, 2) blurring
the visual appearance of insecure objects, 3) a pop-up
system alert, and 4) altering the physics of potentially
malicious objects by scaling them down. Our results show
that red glow warnings were effective as many linked red
to danger, but some mistook it for a guidance VR feature.
Our physics-based alerts were noticeable but caused users
stress by hastening their decision-making, reducing their
effectiveness. Blurred objects reduced interaction yet were
rarely seen as warnings. Pop-ups had mixed reactions,
suggesting the need for clearer messaging. Our findings
have implications for exploration and iteration in design-
ing immersive security warnings.

Contributions We contribute the following:

1) A comprehensive survey of the last decade’s
Human-Computer Interaction (HCI) and security
research, aimed at a) systematizing VR interaction
and feedback modalities for warnings, and b) identi-
fying best practices in warning design to enhance no-
ticeability, comprehension, and effectiveness (§ @)

2) Based on these properties, the design of four distinct
warnings for both well-defined traditional Uls and
more immersive Uls within the scene (§

3) Via two user studies with 61 participants, an evalu-
ation of noticeability, comprehension, and overall
effectiveness of the designed warnings (§ [5] and [6).

4) Design strategies for warnings in immersive sys-
tems based on our comprehensive survey, design, and
analysis. For example, we encourage future work to
explore both a combination of proposed warnings and
the usage of context-specific warnings.

2. Background

Before we present our study, we briefly review the
assumptions about the immersive system for this work.

2.1. System Model

We assume a system where multiple applications or
sources can simultaneously output in the same scene. The
output of these applications can be either a 2D canvas,

an object, or a semi-transparent filter. Such a multi-
object/application model is in line with prior works [|66],
[[67]]. In addition, we assume that our system contains a
trusted output module that manages all output presented to
the user. The output module is the only way an application
can generate output. This model can deny and restrict
the output or overlay feedback (audio or visual) to any
application. This concept aligns with established frame-
works where this output module resides at the system
level, making it a part of the operating system [66]], [67].

2.2. Threat Model and Attacks

We assume the attacker controls third-party code
loaded into a benign app, such as malicious advertise-
ments placed within the scene (see [[67]]). Alternatively,
the attacker may control a malicious app that has been
installed on the user’s system or exploited a vulnerability
in an already installed benign app. In either scenario, the
attacker aims to deceive the user with 3D objects and in-
duce them to perform unwanted operations or interactions.
Such interactions can result in different type of attacks.
For example, the attacker could mount phishing attacks
by mimicking a system UI element, such as a PIN pad,
and presenting it as part of a legitimate operation—Ilike
entering a PIN to confirm a transaction in another app. De-
ceived by its realistic appearance, the victim unknowingly
enters their PIN, thereby compromising their sensitive data
(see [23]], [163]).

Phishing attacks are just one example; other attacks
are also possible. For instance, the attacker can fingerprint
and (re)identify users by inserting objects into scenes
and recording victim interaction patterns (see [98], [99]).
Another type of attack involves malvertisement and ad
fraud, where the attacker exploits the system’s inability
to clearly signal the origin of third-party VR entities.
This leads to the propagation of deceptive and malicious
advertising (see [67]]). Users who interact with these fraud-
ulent ads inadvertently contribute to the financial gain of
the attacker, resulting in personal data exploitation and
potential monetary losses.

2.3. Security Warning Activation

Outright blocking content or applications may not
always be practical, as it can hinder usability and limit
user access to desired content. Instead, many existing
systems employ cues to alert users to potential risks, en-
abling informed decision-making without fully restricting
access. For instance, browsers use HTTPS warnings [33]]
to inform users about unsecure connections rather than
blocking access outright. Similarly, warnings can indicate
if an app is downloaded from unknown sources [47]] or
if it begins accessing new permissions [9], allowing users
to stay vigilant. This paper assumes such an activation
mechanism is in place and instead focuses on exploring
the design space and effectiveness of the associated im-
mersive security warnings.

In immersive environments, warnings play a crucial
role in informing users about potential risks, enhancing
awareness, and prompting reconsideration of risky ac-
tions [3]]. They can mitigate threats from untrusted or
malicious objects by alerting users when engaging with
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Figure 1: Our methodology mapped to the C-HIP model.

unverified interfaces, such as entering credentials into a
spoofed UI or interacting with deceptive overlays.

3. Methodology

We address the challenges of designing and testing
security warnings to protect users from seemingly benign
UI elements within an immersive environment. The first
challenge was identifying suitable methods and out-
put channels for delivering warnings in these immersive
interactions (RQ1). We conducted two surveys, initially
analyzing literature and real-world VR applications to
understand interaction and information delivery in VR.
Subsequently, we drew upon security literature to identify
best practices in warning presentations. We then set to
resolve other challenges with the design of our warnings.
As the VR experiences are full of different stimuli, a key
challenge was ensuring the noticeability of the warnings
among all the other stimuli. Another critical aspect was
ensuring users comprehended the risks when presented
with the warnings. Thus, our design efforts concentrated
on creating noticeable and comprehensible warnings. To
check the result of our design process, we tested the de-
signed warnings’ noticeability, comprehension (RQ2), and
final effectiveness (RQ3) with two user studies. We struc-
ture our methodology using the Communication-Human
Information Processing (C-HIP) model [[160], a multi-step
model to structure the warning research [25[], [[159], and
map the steps to one of our research questions.

C-HIP Model The C-HIP model, sketched in Fig. [1}
offers a multi-stage, structured approach to understand
how users perceive and respond to warnings. The first
stage of the model focuses on the delivery of a warning
from a source, e.g., an operating system or browser, to the
user, using a channel, e.g., an image or a text message,
that the user receives through an interface, i.e., delivery.
The second stage starts once the user receives the warning
and is divided in five steps. It starts with the warning
attracting attention, i.e., notice, as it is competing with
other elements on the same UI Then, the message of
a warning needs to be understood, i.e., comprehension,
and, to be successful, it needs to concur with the user’s
beliefs and attitudes. Another key step for successful
warnings is about the trade-off between the compliance
and non-compliance costs (e.g., time, effort, and stress),
defining the user’s motivation. The last step of the warning

processing is to alter the user’s behavior, e.g., executing
a secure action or avoiding an insecure one.
Methodology Overview Overall, we organize our study as
follows. First, we identify possible designs of immersive
warnings, covering the channel and delivery steps of the
model. Here, we follow a data-driven approach by looking
at prior work in VR interactions, modalities, feedback
methods, and security warnings (§ [3.1), answering RQI.
Then, we evaluate the identified warnings, covering the
individual’s information processing pipeline with two user
studies (§[3.2), answering respectively RQ2 and RQ3. The
studies are designed to be independent and non-sequential,
and we present them in the same order as the C-HIP model
for coherence.

3.1. RQ1: Design Exploration

In our methodology’s initial phase, we identified suit-
able channels and delivery methods for VR warnings,
analyzing VR interaction modalities based on the C-HIP
model’s “D1 — Channel* component and existing feed-
back responses (“D2 — Delivery*). We then reviewed past
security warning literature for guidelines on noticeability,
comprehension and other aspect to increase the overall
effectiveness. Lastly, we integrated potential information
presentation methods with insights from existing warn-
ings, aiming to create effective, feasible warnings for
current head-mounted displays (HMDs) that are resistant
to spoofing by attackers.

Systematization of VR Interactions We conducted a
survey of ACM CHI and IEEE Virtual Reality publications
from the past decade, focusing on VR interaction tech-
nologies, excluding papers unrelated to interaction meth-
ods (e.g., locomotion, surgery). Using a collaboratively
developed codebook [74]], two researchers categorized in-
teraction modalities and feedback designs across academic
research and popular VR applications from the Oculus
Quest Store [90]] and Steam [133]]. We coded interaction
modalities from literature and applications based on input
and output modalities (D1). One researcher categorized
studies, while a second conducted quality assurance to
refine and group similar codes with disagreements re-
solved through discussions to reach a consensus. The same
approach was applied across both academic literature and
VR applications, ensuring consistency. Core application
experiences were observed for 15 minutes (excluding
setup and menus) using the same codebook (§ [A.2).

Systematization of Prior Warnings We reviewed the
proceedings of the top Security and HCI conferences in
the last ten years (including USENIX Security, NDSS,
IEEE S&P, ACM CCS, CHI, PETS, and SOUPS) for
effective warning design ideas and guidelines, selecting
them as key venues at the intersection of security and
usability. Using relevant keywords (full queries listed in
§ [A.I), we focused on papers specifically discussing and
studying warning designs. We included only work that
presented new warning designs, evaluated existing warn-
ings, proposed improvements, identified flaws, or provided
design recommendations. Works that did not focus on
warnings, e.g., addressing only the underlying systems
managing warnings or focusing solely on user training,
were excluded. A codebook [74] guided the extraction and
categorization of warning designs into recommendations



that designers can use to provide better warning deliv-
ery (D2). This involved a two-step process where one
researcher initially identified relevant papers and extracted
key design features and their impacts, categorizing them
based on their implementation, with additional categories
for discrete warning attributes like color or tone. A sec-
ond researcher then conducted quality assurance checks
to ensure consistency in categorization and relevance to
warning efficacy, with disagreements resolved through
discussions to reach a consensus. The result can be seen
in Tab. [3

Designs of Secure Immersive Warnings After a com-
prehensive review of existing interaction modalities and
security warnings, we formulated guiding principles for
designing warnings in VR, ensuring the utilization of all
available feedback methods. These rules directed us to
investigate immersivity levels, feedback mechanisms, and
to ensure universal applicability across VR devices. Lastly,
our rules guided us to avoid known design pitfalls from
past warnings. Details on these principles are in §

3.2. RQ2-3: Initial and Behavioral User Response

We conducted two user studies to evaluate users’
initial and behavioral responses to warnings in a VR envi-
ronment when interacting with application-logic specific
UI elements, with each study addressing different stages
of the C-HIP model. The distinct objectives of each study
required different methodological approaches, allowing us
to explore separate aspects of warning perception and
decision-making while maintaining consistency in objects
and tasks for comparison.

3.2.1. User Study 1: Initial User Response. In the first
study, we evaluated the first four stages of the C-HIP
model —from “(US1) Notice” to “(US4) Motivation”—
using a user task, followed by a questionnaire and an inter-
view. In the user task, participants interacted with VR ob-
jects with and without the warnings to assess their impact
on task performance and noticeability. Specifically, we
examined how warning condition influenced interaction
times, with longer interactions possibly indicating friction
or hesitation. As it is described in the subsequent part
of the paper, due to a smaller-than-expected participant
size, we relied on general trends rather than statistical tests
for this analysis. The questionnaire, inspired by SUS [20]
and NASA-TLX [49], assessed workload, usability, and
perceived risk. We investigated whether our warnings
increase workload and usability friction and decrease the
users’ sense of security and motivation to interact with
objects, as a successful warning should, compared to the
no-warning condition. To analyze these effects, we used
linear mixed models with warning as a fixed effect and
a maximal random structure to account for dependencies
across participants, items, and objects. The interview ex-
plored warning noticeability, user reactions, and beliefs
about VR security and assessed participants’ perceptions
of malicious intent behind warnings and their possible
motivation to avoid interaction.

3.2.2. User Study 2: Behavioral Response. The second
study explored the latter stages of the C-HIP model, from

“(US2) Comprehension” to “(US5) Behaviour”. It inves-
tigated users’ decision-making in assessing VR object
security and collected feedback on designed warnings.
The study was divided into a task and an interview.
Participants were exposed to all warnings individually,
using the same objects and tasks from the first study.
This setup allowed us to assess their effectiveness in
minimizing interactions with insecure objects while also
understanding why certain warnings succeeded or failed.
To limit free exploration and prevent potential confounds
from repeated exposure to the same scene, we presented
the same tasks as in the first study but placed them individ-
ually in distinct environments. We examined differences in
object interactions (yes/no) as a function of warning and
object. To determine whether warnings reduced interaction
and whether this effect varied by object, we conducted lin-
ear mixed model analyses, including warning, object, and
their interaction as fixed effects, with object interaction
as the outcome variable. Estimated marginal means were
used to further analyze these interactions. Post-experiment
interview let participants elaborate on their experiences
with each warning, focusing on comprehension, motiva-
tion, and behavior. Additionally, it assessed participants’
perceptions of malicious intent, as they were explicitly
aware that some objects posed security risks.

3.2.3. Data Collection and Metrics. To determine the
success of our warning system in the user study, we
focus on several essential metrics. These include evalu-
ating the system’s noticeability, the caution it instills in
users, its impact on interactions, and overall behavioral
influence. We aimed to thoroughly evaluate the warning’s
performance against its goals through quantitative and
qualitative data from interactions and feedback.
Interaction Data Throughout the VR experience, we col-
lected timestamped events such as when the user inter-
acts with objects and state changes (e.g., warning on/off,
start/stop action, and objects’ position). We validated the
experience by re-enacting users’ actions with timestamped
head and hand positions and rotations.

Interviews We audio-recorded interviews under the ex-
plicit consent of the participants for the sole purpose of
transcribing and analyzing them.

3.2.4. Recruitment. We used both remote and in-person
recruitment. Study 1 was conducted remotely via Pro-
lific due to pandemic-related restrictions on laboratory
access, while Study 2 was conducted in person once
access was restored. Additionally, the Prolific participant
pool was exhausted after Study 1, requiring in-person
recruitment for Study 2. Participants were screened to
meet the study requirements, and compensation was set
above the local minimum wage for in-person participants.
For remote participants via Prolific, we followed Prolific’s
payment principles guidelines, using their recommended
payment [[112]. Adjustments were made for commuting
costs (in-person) and potential technical issues (remote).
Tab. [T3] and Tab. [16]in § provide a summary of par-
ticipants’ demographics. The full dataset is in the public
repository.

3.2.5. Data Availability. The data collection script and
processed data for statistical analysis, including interaction



times, are available in an anonymized repository and
will be permanently hosted on Zenodo. Raw data, such
as controller and head movements, have been excluded
to protect participant privacy and mitigate fingerprinting
risks. The repository includes detailed instructions for re-
running the analysis. The shared files can be accessed at:
https://doi.org/10.5281/zenodo.15210478

3.3. Ethical Considerations

Our study involved human participants and was ap-
proved by our institute’s ethical review board. To ensure
privacy and security, all data were collected over a TLS-
secured connection, anonymized for processing, and audio
recordings of interviews were deleted after transcription,
with any personally identifying information removed. To
minimize safety risks, we ensured a controlled environ-
ment to reduce injury risks due to the VR headset covering
both eyes and for seizures, we relied on the Quest’s own
warnings. For remote participants, the application was
designed to be self-contained, requiring no installation,
only internet access, and leaving no traces on personal
devices. It could not be reused after the experiment. All
participants provided informed consent before the study,
with a post-study debriefing when full disclosure was
initially limited. They could withdraw participation at any
time, even post-debriefing, while still receiving compen-
sation (via Amazon voucher or bank transfer).

4. RQ1: Design Exploration

In this section, we instantiate our methodology and
present the designs we identified (RQ1). By examining
interaction and feedback modalities, we assess potential
warning channels (D1) and, drawing on insights from prior
warnings, we develop approaches for VR warning delivery
(D2). The output of this section is the list of designs to
consider for the user studies.

4.1. Analysis of Prior and Existing Systems

4.1.1. Interaction Modalities and Feedback Mecha-
nisms. From the past decade of ACM CHI and IEEE
Virtual Reality publications (9,896 papers), we identified
243 relevant papers using keywords like VR, virtual,
and haptic. After excluding non-relevant papers, we
analyzed 73 papers. We also reviewed a total of 20
VR applications for 15 minutes each to enumerate the
observed interaction modes with the objects in the scene
and the feedback responses. We focused only on the
core experience of the applications and did not explore
the interstitial menus or setup needed to enter the core
experiences. A researcher coded papers and applications
with the same codebook, resulting in 17 distinct designs
for interaction modalities and feedback mechanisms with
virtual objects, as illustrated in Tab.

We identified two sets of object interaction modali-
ties. The first category encompasses interactions via input
devices that do not realistically model the intended in-
teraction modes of the virtual object, e.g., VR controller
triggers that are used to grab objects [[103]]. The other cat-
egory captures more natural interactions, e.g., via custom

TABLE 1: Systematization of modalities (Input) and feed-
back (Output Ch.): Phy are physical input dev., Vir are
virtual dev., A/V are audio/video ch., UI are 2D canvas ,
Sens. are sensorial ch., and Beyond are beyond-real ch.

Input Output Channel

E

Immersivness
Level

Sens.
Beyond

References

Interrupt the
experience

1 paper; 5 apps
2 papers

2 papers

4 apps

o0 O Py
0O | Vir
0000 U/

Enhance the
experience

1 paper

19 papers

2 papers

4 papers; 4 apps
3 papers; 1 app
23 papers

4 papers

1 paper; 3 apps
1 paper

([ 3 apps

Beyond-real
experience

10 papers
1 paper
[ J 2 papers

controllers able to actuate forces [[135] or computer vision
to track fingers’ movements [149] to reproduce the act of
grabbing an object.

The output coding identified four broad feedback
mechanism categories. The first category (i.e., A/V clues)
uses visual or auditory cues to give feedback to the
users, which is the most common category identified in
our survey. Examples are sketching [[103] and designing
tools [56] that help create interactive spaces giving a
visual feedback to users. The second category relies on
sensory reconstruction such as output simulating the tac-
tile experience when interacting with real-world objects.
For example, haptic [111] or electrovibration [169] to
enhance tactile perception in virtual manipulation. Many
approaches also rely on traditional two-dimensional UI
controls. For example, applications showing video [92]
or Social Networks [88] to users. The last category is
for output which relies on beyond-real experiences by
manipulating spatial-temporal perception, e.g., extending
virtual spaces by amplifying the mapping of physical to
virtual movement [[157], or by altering the physics of the
virtual environment, e.g., adding visuo-haptic illusion for
stretching distances [[39], or by changing body perception,
e.g., by deviating the mapping with their avatar limbs [|36].

Moreover, we categorized the various combinations of
interaction and feedback into distinct levels of immersive-
ness, as detailed in Tab. [I] In four designs, the feedback
mechanism places the output outside of the VR world,
interrupting the experience. For example, the user must
use an external device like a mobile phone to interact
with an object [80]. In another case, interacting with a
class of objects, the user is teleported to another VR
scene, interrupting the current experience, e.g. in Social
VR App [131] to enter different worlds. In ten designs, the
feedback mechanisms enhance the immersive experience
with visual, auditory, or other sensory augmentations, e.g.,
the object glows, vibrates, or emits a sound when the
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user grabs it. Enhancing the experience is by far the most
common type of design in our survey. The final type of
design relies on beyond-real experiences, where the feed-
back mechanism is implemented by bending physic rules,
e.g., the user’s virtual hand is moving slower than the real
hand to simulate force when moving an object [[166]. The
complete table mapping articles, interaction modalities,
and feedback mechanism is in §

4.1.2. Prior Security Warnings. From the last decade of
Security and HCI conferences (15,214 papers), 68 articles
matched our keywords, and we reviewed their abstracts.
We then excluded 42 as out of scope, i.e., not presenting or
discussing warning designs. One researcher then reviewed
the remaining papers (26) utilizing a codebook to identify
design principles to reach effective warnings, focusing
on our goal of noticeability and comprehension. Tab. [2]
shows our results. Our analysis identified two main design

TABLE 2: Prior security warning design strategies. Ex-
panded advices can be seen in Tab. E‘]

Design Notice & Comprehension General

Ret. |< €|A B C D E F G|H I 1 K

(101 o
(4] L4
[43]
(6]
18]
[110]
[109], [145]
(48]
[155]
[54]
(114)
[T42]
[150]
(108])
[115], [161]
(147)
155 ®
175] o
[64], [167] o

(1100] L (] (

strategies in security warnings that we call active and pas-
sive. Active strategies intend to interrupt or alter the user
workflow. They are typically implemented as intermediate
pages or pop-up windows that prompt user interaction
before proceeding. For example, Chrome may display an
alert page before entering a suspicious site, requiring the
user to click a button to continue to the page. Passive
strategies do not interrupt users’ activity but present sup-
plemental information or cues about potentially dangerous
actions. Examples of such warnings are non-modal, non-
blocking pop-ups in older browsers (e.g., Internet Explorer
7.0 and Firefox 2.0 [33]])) informing users if the page
being visited is known to be malicious. Tab. [3] presents
the specific codes we created for advice and techniques
aimed at enhancing both the noticeability of warnings and
promoting user adherence. Our findings highlight several
effective strategies. For noticeability, employing iconogra-
phy and distinct color schemes [19], [41], [54] (A), inte-
grating multi-modal elements [S5]], [109], [110] (B), using
warnings within the scene [108]], [142]], [[145]], [155] (C),
and implementing physics-based designs [[150] (D) are all
shown to significantly capture users’ attention. However,

TABLE 3: Enumeration of prior security warning design
recommendations from the literature review.

Notice A Employ iconography and color scheme
B Utilize multi-modal elements

C  Integrate warning within the scene

D  Implement Physics based warning

E
F

Develop a distinct UI style

Comprehension Opinionated design to engage with the safe
option

Increase task friction

Avoid habituation

Provide comprehensive risk information
Training to (re)form beliefs and attitudes
Ensure consistency and accessibility of
warning

G
General H
I
J
K

while ensuring visibility, warnings should also be distinct
from existing Ul elements to avoid confusion [6], [[147]]
(E). In terms of promoting comprehension, incorporating
opinionated design elements [19], [43], [[75], creating a
“sense of fear* [57], and utilizing prohibitive design tech-
niques [75] (F) have proven effective in deterring users
from engaging with unsafe options. Additionally, increas-
ing task friction [4] (G), while maintaining usability, can
further guide users towards safer interactions.

Additionally, we coded and followed advice from
the C-HIP scale, informing our development of effective
warnings and providing valuable guidance for others de-
signing and refining warning systems. Avoiding habitu-
ation (H), through polymorphic warnings [8]], [148] or
avoiding unneccesary or too frequent warning [[147] is
essential to have a functional warning. Providing com-
prehensive risk information [4]], [114], [115], [161] (I)
and providing training [101] (J) is crucial for enhancing
user comprehension and motivation. Moreover, ensuring
consistency and accessibility (K) in warnings is vital for
supporting users with impairments, making them inclusive
and effective for a wider audience [[19]], [64], [167]]. How-
ever, since VR attacks and warnings are still emerging and
not widely recognized, habituation and rational rejection
were less decisive in our design choices than factors in
the Notice and Comprehension categories, though their
importance may grow as threats evolve.

4.2. Design Immersive Warnings

Guided by our overarching goals for effective warning
communication, our design exploration identified three out
of 11 potential immersive non-spoofable design ideas that
can be implemented with readily-available technology.

4.2.1. Design Principles. We faced the challenge of de-
signing warnings by defining a set of principles. The first
and second principles are based on our systematization
which identified three levels of immersiveness imple-
mented via various feedback mechanisms (see Tab. [I)):
First, as we focused on immersive warnings, we delib-
erately excluded those that significantly interrupted the
immersive experience, as maintaining immersiveness was
critical to ensure a continuous and cohesive user expe-
rience within a virtual reality environment. Second, we
addressed various feedback mechanisms that define lev-
els of immersiveness, including warnings through audio,



visual cues, sensor-based feedback, Uls, and beyond-real
interactions, since noticeability and comprehension strate-
gies [159] effective in 2D may not seamlessly translate to
3D, where attention is distributed across multiple sensory
inputs. Third, our literature survey identified two broad
design categories—active and passive warnings—and we
ensured coverage of both categories.

4.2.2. Feasibility and Channels Exclusion. A funda-
mental property of a warning sign is to be accepted
as a universal danger sign [159]], which can be under-
mined by variable capabilities of existing VR devices
(i.e., HMDs). For example, warnings relying on haptic
feedback will not work on HMDs not supporting haptic
feedback. Accordingly, our design exploration considered
the input/output capabilities of current HDMs. We looked
for the input/output channels and technical specifications
(e.g., hand controllers, gaze tracking, and haptic feedback)
of the top four best-selling consumer-grade HMDs [123]],
i.e., Meta Quest 2, Playstation VR, HTC Vive Pro 2,
and Valve Index. We considered all the different modes
in which each device can be used, e.g., the Quest 2
works either linked to a PC or in standalone mode, and it
can use either the controller or the hand tracking only.
With this separation applied to each device, we could
not design warnings relying on external devices, such as
smartwatches and smartphones, and external controllers,
such as vibro-haptic feedback devices.

We avoided problematic color distinctions for color
vision deficiencies and opted not to use audio warnings,
recognizing their limitations for individuals who are hard-
of-hearing. This decision was informed by the critical
importance of accurately locating the spatial source of
warnings for their effectiveness [159]]. Acknowledging the
importance of accessibility and inclusivity, our designs
prioritize visual warnings that work across all VR hard-
ware, not limited by specific devices or sensory impair-
ments, ensuring universal applicability and effectiveness.

4.2.3. Security Considerations. As a final step, we com-
pared each design idea against our threat model (Section
§ [2), to determine if an attacker can tamper or spoof a
security warning. First, we avoided designs whose chan-
nels are Ul elements that are part of the scene, including,
for example, objects that a user can grab to inspect the
security of other objects. For example, when brainstorm-
ing for ideas, we considered a magnifier that a user can
grab and use to inspect other objects in the environment.
However, an attacker could place in the scene a similar
object with identical functionality, making it hard for the
user to tell apart the original from the forged magnifier.
Then, we also decided to consider designs using only
negative feedback, i.e., a warning will identify objects that
are insecure, because positive feedback, e.g., decorations
for secure objects, can be recreated by an attacker around
malicious objects. Similarly, we did not place warnings
around or inside objects such as labels or images, e.g.,
locks, as these can be forged, too.

4.2.4. Warnings. After the security review of our warn-
ings, we moved from 11 to five channels for warnings.
However, since our focus is on immersive designs, we
removed two warning channels (Controller (LED) and

Smartphone/watch) interrupting the experience (see “Out
of Scope” in Tab. ). Our warning design process was
informed by principles from past usable security research
in 2D environments and adapted for immersive 3D VR
settings. Starting from the remaining three categories, we
derived four designs (see Fig. [2):

Virtual Object This design relies on visual decorations
to highlight insecure objects. Drawing from 2D visual
boundary indicators [164], we translated this concept into
3D. Several possible decorations can be implemented
in immersive environments, e.g., the visual sandbox of
AdCube [67]. Here, we took a different design direction,
and instead of containing the entire third-party content in
a wireframe, we created a red glow effect (Red Glow,
hereafter) around the object to indicate maliciousness.
System UI These designs rely on system Uls to warn the
user. We explored two. The first intends to change the
visual appearance of an object to make it less desirable to
interact with. The second one is an active warning system,
which appears as soon as the user interacts with the object:
Visual alteration. A visual alteration changes the ren-
dering of an object. We focused only on an alteration that
results in visual degradation [[159] to create a warning for
insecure objects, similar to the visual decoration. Visual
degradation can be achieved in multiple ways, such as
rendering an object in grayscale. In 2D Uls, grayscale
is commonly used to signal inactive elements [[146]]. We
focused on an implementation that can render the object
less attractive [12], [62] when insecure and selected the
blur effect (Blur, hereafter), by adding a blurry layer on
top of the object until the user interacts with it.
Interstitial UI.  The second design explored an active
warning system, which engages the user through a pop-
up alert window (Pop-Up, hereafter), a typical direct
attention-grabbing mechanism to prevent unsafe actions in
2D interfaces [33]], [[136]. The presented Pop-Up shows
the “Interact with the object?” message when the user
interacts with the insecure object. The user must dismiss
the Pop-Up by answering yes to resume the interaction.
Alteration of Physics Unlike the other three warnings,
which adapt existing 2D security principles, the alter-
ation of physics introduces a beyond-real design unique
to immersive environments by modifying the interaction
dynamics of insecure objects [2]. We considered differ-
ent options, e.g., via magnetically repulsing objects. We
decided to implement negative feedback in the form of
scaling down the dimension of the object (Scale Down,
hereafter) as soon as the user starts the interaction.

5. RQ2: Initial User Responses

In the first study, we explored participants’ initial
responses to immersive warnings (RQ2) using a task, a
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Figure 2: Examples of the four warnings implemented and
evaluated with one of the task primary object.
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questionnaire, and an interview. To get an unbiased initial
response, participants were not aware some objects had
warnings up until the end. During the task, we measured
performance during object interactions under varying con-
ditions to observe the impact of warnings on task execu-
tion. The questionnaire evaluated the effects of warnings
on user interactions, mental workload, and perceived risk,
while the interview probed noticeability, comprehension
of warnings, and participants’ motivation to not interact
with warnings. The study’s procedure, recruitment, and
results are discussed in § [5.1] to [5.3] respectively.

5.1. Procedure

Prep Phase Participants were recruited via Prolific []1]
and provided consent before joining the study. They then
received a PDF with instructions, a binary link, and execu-
tion steps for their HMDs. The task began with a manda-
tory tutorial to familiarize them with interactions. The
tutorial scene and objects resembled but were not identical
to the main task to prevent habituation. To simulate real-
world high-stress conditions in warning processing, partic-
ipants were told the task had a time limit [24]], though none
existed. To avoid priming, we omitted security-related
terms in the study description and tutorial and gave no
instructions on how to behave toward warnings.
Experiment Phase After completing the tutorial, partic-
ipants undertook the main task, which took place at a
virtual office. Virtual offices are an increasingly important
use case for immersive technology as witnessed by recent
ideas by Microsoft [93]] and Meta [82]. On a desk, par-
ticipants found eight common office items, implementing
specific functions. These objects included interactive items
like a smart picture frame, which was activated by typing
a secret PIN, and a pen that could be moved around.
The eight objects are in Fig. 3| and the list of task is
in Tab. [7] in § [B.3] We divided those objects evenly
into two groups: four primary and four decoy objects.
Primary objects were the focus of our study, therefore
each participant was presented with one of our warnings
in two of those objects (i.e., between-participant design),
one on a desk object and another on a canvas over the
desk. Decoy objects, ‘e-h‘ in Fig. [3] were interactable but
never showed warnings. Participants engaged in diverse
interactions with the objects, like moving a pen into a mug
or typing a PIN to enable a monitor (details in § [B.3).
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Figure 3: The eight objects of our user studies. (a-d) are
primary objects and (e-h) are decoy.

Participants could track progress with an always vis-
ible to-do list, randomized per user to reduce bias. The
task was developed for Meta Quest HMDs, chosen for its
market dominance [123]], using C# and Unity.
Post-Experiment Questionnaire and Interview After
completing the task, participants answered four ques-
tionnaires—one per primary object, two of which had
warnings. These assessed whether and how warnings im-
pacted usability, workload, and perceived security risks.
We designed the questionnaire by adapting the SUS [20]
and NASA-TLX [49] scales, adding two custom questions
on motivation and comprehension of the C-HIP model.
Participants indicated whether they wanted (want item)
to interact with the object and if they felt safe (secure
item) doing so. The term safe was used to capture a
general sense of risk, as participants were unaware of
insecure objects in the scene. The complete questionnaire
can be seen in § It was administered within the VR
environment, following established methodology [5], to
avoid potential bias from exiting the virtual environment
before responding [113]], [[121]].

The interview, detailed in § aimed to gather
qualitative feedback on notice and initial processing of
warnings, structured per C-HIP stages for analyzing warn-
ings. After onboarding, which covered IRB procedures
and welcomed participants, we asked if they noticed
(US1) the warnings (‘unexpected behavior or appear-
ance‘). We then explored participants’ perspectives and
comprehension (US2). To understand their beliefs and
attitudes (US3), we examined their perceptions of VR
objects as security risks. Next, we assessed motivation
(US4) by asking whether the warnings influenced their
willingness to complete tasks. The interview concluded
with a debriefing, where participants learned the study’s
true purpose—examining responses to security indicators.
They were given options to withdraw and the opportunity
to suggest warning designs.

5.2. Recruitment and Demographics

We recruited remote participants as the study started
towards the end of the COVID-19 pandemic, and used
Prolific, an online platform [37] to find participants for
user studies. As we developed our experiment for Meta
Quest, we first screened Prolific users for Meta Quest own-
ers with a short survey asking if (i) the survey participant
owns a Meta Quest headset and (ii) if they were willing
to participate in a user study on VR with or without the



interview. We invited to participate in our short survey all
Prolific users tagged by Prolific as VR owners and selected
the first 1,000 respondents. We compensated each survey
participant with £0.15ﬂ We estimated 60 minutes for the
preparatory phase, user task execution, and questionnaires,
including a 10 minutes buffer for troubleshooting. We also
estimated additional 40 minutes for the online interview,
including 10 minutes breaks before the interview. We ap-
plied an hourly rate of £14/hour (£14/£24 without/with the
interview) against the £9/hour recommended by Prolific,
to account for the added challenge of using a VR headset.

A total of 212 respondents owned a Meta Quest de-
vice and expressed interest in participating in follow-up
studies. Among them, 43 preferred to participate without
an interview, while 169 were willing to participate with
an interview included. Of these 212, 172 did not join our
study, and two joined but did not start our study for tech-
nical reasons. The remaining 38 participants finished the
user study. After reviewing the submitted data points, one
participant concluded the user task and the questionnaire
twice; we, therefore, excluded this participant from the
analysis. Of the remaining 37 participants, 30 submitted
valid data points for the objects interaction (24 men, six
women; age: M = 31.37, range = 18-72), 37 had valid
questionnaire data (31 men, six women; age: M = 30.81,
range = 18-72), and ten successfully participated in the
interview (six men, four women; age: M = 32.20, range
= 22-42). The total observed participant drop-off could
be attributed to the need for our own screening process to
find Meta Quest headset owners, reluctance to join audio-
recorded interviews and other unknown factors causing a
change of heart in participants in between agreeing to take
part and actually taking part in the study.

5.3. Results

We report task metrics as general trends to assess dif-
ferences in task performance. The questionnaire responses
were inferential statistically interpreted to measure the
impact on workload and usability, and to gauge partici-
pants’ comprehension of potential security risks. Insights
from the interviews were extracted via thematic analysis,
further contributing to our understanding of noticeability
and initial comprehension.

5.3.1. Initial Response-Interaction.

Insights.  'We examined interaction times (time from the
first until the last moment of interaction with any object in
the scene) across various warning conditions. The ratio-
nale behind this approach is the assumption that warnings
might have caused disruptions in the interactions with
objects (e.g., due to hesitation to interact with or longer
inspection of objects), leading to longer total interaction
times. With this approach it is not possible to compare
each warning condition with a no warning condition since
this was manipulated as a within participant factor and,
thus, potential differences between warnings would have
to be interpreted as relative in nature.

The examination revealed intriguing behavioral pat-
terns. As can be seen in the inter quartile range the

1. This is the Prolific recommended compensation for a 60 seconds
short survey.

Pop-Up condition (Mdn = 121.61, IQR = 78.63, Min
= 81.57, Max = 320.62) created the largest variation
in interaction times, indicating a differential effect of
the warning on participants. Conversely, the Scale Down
condition (Mdn = 98.72, IQR = 18.13, Min = 69.15,
Mazx = 246.1) demonstrated the most uniform interaction
times, indicating that the warning had a similar effect on
participants. Moreover, Scale Down showed the lowest
minimum and maximum interaction times, possibly, as we
will see in § due to a sense of urgency caused by
reducing object size. The Blur (Mdn = 124.11, IQR =
46.24, Min = 105.21, Max = 249.31) and Red Glow
condition (Mdn = 101.41, IQR = 52.54, Min = 76.34,
Max = 383.90) ranged somewhere in between the Pop-
Up and Scale Down condition, showing some variation in
interaction times, both showing more differences between
participants as compared to the Scale Down condition but
less differences compared to the Pop-Up condition.
Participant Pool.  The design for the assessment of
task metrics would have required a larger number of
participants per experimental cell to conduct an inferential
statistical analysis (we exhausted the available participant
pool). Consequently, we reported general trends for these
metrics. However, questionnaire responses, for which the
design was unaffected by these sample size consider-
ations, were analyzed inferentially to assess workload,
usability, and participants’ comprehension of potential
security risks. Additionally, insights from the interviews
were analyzed thematically, enhancing our understanding
of noticeability and initial comprehension of warnings.

5.3.2. Decomposing the Initial Response-
Questionnaire. We ensured suitability of the data
for the analysis calculating the Cronbach’s alpha [26],
both indicating good reliability for both scales (o =
.83 for SUS, and o = .82 for NASA-TLX), then we
conducted linear mixed model analyses and report the
maximal random-effect structures that converged or
allowed a non-singular fit [[14]. Detailed description of
the models, with parameters and estimates can be found
in § from Tab. 0] to Tab. [I2] The conditional design
of the questionnaire enabled statistical analyses, despite
the limited number of participants.

As a first step, we assessed whether we observe any
difference between warning and no warning. The analysis
revealed a significant main effect of *warning’ for SUS
items, x2(4) = 41.58, p < .001 and NASA items, x%(4) =
18.37, p = .001, indicating that the warnings differed with
respect to their perceived usability and workload from the
control condition (i.e., no warning attached to the objects).

Moreover, the analysis revealed a significant main

effect for both of our own items, for the want item (Q10
in Tab. , x2(4) = 11.03, p = .026 and for the secure
item (Q11 in Tab. [8), x2(4) = 14.02, p < .007, indicating
that the warning had an effect on whether the object was
perceived as secure and desirable to interact with.
(2) Comprehension of Warnings We assessed compre-
hension with the ’secure’ item. Results show that objects
that Scale Down (M = 4.22, SD = 0.81) were perceived
as significantly less secure to interact with and Red Glow
objects (M = 4.82, SD = 0.39) were perceived as sig-
nificantly more secure as compared to objects with no
warning attached (M = 4.46, SD = 0.67).



(3) Motivation for not Interacting with Warnings
We then analyzed users’ motivation with the SUS items
(usability), NASA-TLX items (workload), and the want
item. The friction of object interaction influences motiva-
tion (not) to complete a task [[159]. We measured friction
by analyzing the reduced usability and mental workload
associated with using the object if the warning is present.
Additionally, we measured the want factor to interact with
the object despite the warning.

Usability.  Results show that the Blur (M =3.93, SD =
1.04) and Scale Down (M = 3.56, SD = 1.18) warnings
were perceived as significantly less usable as opposed to
no warning attached (M = 4.3, SD = 0.98). No other
effect reached statistical significance for usability.

Mental Workload. — The NASA items show that Scale
Down (M = 3.99, SD = 1.05) was perceived as signif-
icantly more mentally taxing as opposed to no warning
attached (M = 4.47, SD = 0.87). No other effect reached
statistical significance for mental workload.

Want.  The analysis of the want item shows that blurring
objects significantly reduced users’ desire to interact with
the objects (M = 3.44, SD = 1.26) compared to objects
without any warning attached (M = 4.48, SD = 0.90).
No other effect reached statistical significance for the
motivation to interact with the object. More details about
the statistical analyses are given in § We performed
sensitivity checks due to the small sample size, using a
significance level of p = .05 and a power of .80 to detect
warning effects. These checks established a minimal de-
tectable effect of .44, suggesting cautious interpretation of
our results, as most estimates were below this threshold.

5.3.3. Decomposing the Initial Response-Interviews.
From our analysis of the interviews, we identified several
insights and participants’ reflections that we grouped fol-
lowing the C-HIP stages: (1) Noticeability and Perception
of Warnings, (2) Comprehension of Warnings, (3) Beliefs
and Attitudes towards VR Security and Privacy, (4) Moti-
vation for Interacting with Objects with Warnings. While
participating in these interviews, the participants were not
yet aware that the study focused on security warnings. We
slightly edited some quotes for readability.

(1) Noticeability and Perception of Warnings We as-
sessed noticeability and perception, asking participants if
they noticed unexpected behavior or appearance. Seven
out of ten participants noticed the warnings, while three
did not (2 Red Glow and 1 Pop-Up). Those who noticed
had mixed impressions: Scale Down and Blur were con-
sistently described as out of place with the experience,
while Red Glow and Pop-Up felt part of the experience.
(2) Comprehension of Warnings Not all warnings were
associated with negative feelings. For example, P8, one of
the three who interacted with Red Glow, associated it with
danger but confused it for an object highlighting feature:

I know generally red is perceived as danger. But just
in that environment, I think it was there just because it
was pointing my direction to something. (P8)

P9 made a similar confusion about Red Glow, but did
not associate it with danger. The last participant pointed
out that, even if it was unnoticed, Red Glow suggested
caution:

I would definitely think that it was some kind of
caution. I would maybe think, if it looked particularly
out of place, I might think something was going wrong
with the actual VR program itself, that that’s not meant
to be there. But red is generally not a good sign. (P1)

P2, like P8 and P9, associated Pop-Up with a high-
lighting feature:

You want to interact with one object, and you want
to make sure it’s this one and not the one next to it,
then [the pop-up] would make sense. (P2)

Another contradiction in perception came from P7,
who misinterpreted Blur as a privacy shield despite it
causing motion sickness by hindering depth perception.

Other participants associated negative feelings with
Scale Down and Pop-Up. For example, P3, P4, and P10
noted they were either distracting or disruptive, indicat-
ing an increase of friction in the interaction, which is
associated with higher warning compliance [159]]. The
remaining four shared mixed feedback. For example, P5
acknowledged that Pop-Up adds friction, but it may cause
habituation over time. P6 shared that Scale Down was
confusing as it may signal some wrong action and was
unsure if the task, i.e., typing a PIN, would have been
completed on time.

(3) Beliefs and Attitudes Towards Security and Privacy
We asked participants about general risks affecting virtual
worlds, and they identified risks from four categories,
i.e., personal data theft (6/10), social engineering attacks
such as phishing (5/10), malware (3/10), and physical
harm (1/10). Only one participant, P6, did not mention
any security risks. When we asked participants about
the potential consequences of interacting with a generic
malicious object, most answers pointed out that social en-
gineering attacks are the first security consequence (5/10),
followed by malware (3/10), personal data theft (2/10),
and physical harm (1/10). We note that at this point,
we did not inform the participant that the objects with
warnings were malicious.

(4) Motivation for Not Interacting with Warnings Par-
ticipants demonstrated caution towards potential security
threats, with 7/10 stating they would avoid interacting
with warning-marked objects. Pre-existing awareness of
security risks significantly influenced participant behavior,
whereas unfamiliar threats were often treated with less
gravity. For instance, when discussing a PIN entry object,
P1 expressed trust in a more interactive method, stating:

I think I'd have more trust in a pen that you can
pick up and draw numbers... maybe just the idea that
it would be slightly harder for a machine to read it if

I'm drawing out on a whiteboard (P1)

Finally, when we asked participants if the displayed
warning acted as a deterrent for interaction, 6/10 answered
yes, and 4/10 answered no. The merged codebook for

study 1 can be found in §
6. RQ3: Behavioral Responses

Our second study measured the second part of the C-
HIP scale, the behavioral compliance towards warnings,
through a behavioral task and user interviews. This ap-
proach evaluated the C-HIP model’s latter stages, focusing
on comprehension and behavior towards warnings. We



utilized quantitative measures like object interaction and
qualitative analyses to measure warning effectiveness. The
study’s procedure, recruitment, and results are discussed

in sections §[6.1] §[6.1.1] and § [6.2] respectively.
6.1. Procedure

Prep Phase Participants were instructed to interact with
secure objects and avoid non-secure ones, omitting terms
like *warning’ to prevent bias. This ensured we measured
warning effectiveness while making participants aware
that some objects could be malicious without specifying
which or how to identify them. Full context and threat
model details were provided in the interview (§[B.6). Next,
participants received the consent form, had time to read
it, and were informed about data collection. After signing,
they completed a demographics and prior VR experience
questionnaire. They then wore the Meta Quest 2 headset,
seated with ample space to prevent injury, with the HMD
cable secured to avoid tangling. The experiment began
with the same tutorial as the first user study.
Experiment Phase Instead of displaying all eight objects
at once as in study 1, we sequentially showed only the
four primary ones, with and without warning (i.e., within-
participant design). Accordingly, each participant saw all
combinations of objects with warnings. To simulate real-
world conditions, we set a 20-minute time limit, which
was sufficient, and no participant exceeded it. At any
time, users could interact with the displayed object or
skip it via the controller A button. We minimized potential
confounds between the office scene and the four primary
objects by using three additional environments, i.e., a
festive room, a garage workshop, and an outdoor garden
(see Fig. [@). For the quantitative analysis, we treated
warning as a five-level condition (i.e., No Warning, Red
Glow, Blur, Scale Down, Pop-Up), object as a four-level
condition (i.e., Pen, Frame, Switch, Plant) and collapsed
over all scenes, for a total of 80 interactions. We randomly
ordered the sequence of interactions per participant.

(c) Party

(d) Outdoor

Figure 4: We used scene (a) as the main study scene (RQ2)
and added scenes (b-d) to minimize potential confounds
between the office setting and the four primary objects.

Post-Experiment Interview Before the interview, par-
ticipants saw each object individually in five warning
configurations, and we asked them to describe the thought

process when interacting with objects. In the interview,
we explored participants’ criteria for object security, fo-
cusing on understanding and emotional responses (US2),
followed by security beliefs and motivations (US3-4) in
VR. The session ended with a debrief on the threat model,
reflections on warning effectiveness, and design ideas.

6.1.1. Recruitment and Demographics. We conducted
our second user study in person, and recruited participants
on the University campus via flyers and student mailing
lists. Participants needed prior VR HMD experience. We
estimated the experiment and interview would take about
two hours, and compensated participants with approx.
£13/hour in local currency. In total, we recruited 23 par-
ticipants, used the first three as pilot and excluded them
from our analysis. We removed two more participants for
not meeting the study’s requirements, i.e., prior VR HMD
use. In total, we analyzed data from 18 (11 men, 7 women;
age: M = 25.33, range = 19-36) participants.

6.2. Results

We analyzed task metrics, and followed the same
method for extracting insights from interviews via the-
matic analysis.

6.2.1. Behavioral Response. We investigated warning
effectiveness based on participant interaction, fitting a
model with *warning’ (i.e., No Warning vs. Blur vs. Red
Glow vs. Scale Down vs. Pop-Up), *object’ (i.e., frame vs.
pen vs. switch vs. plant) and the two-way interaction of
warning’ and ’object’ as fixed effects. The model had a
by-subject (i.e., participants) random intercept. We report
the maximal random-effect structures that converged or
allowed a non-singular fit [[14]]. A detailed description of
the following analyses, including p-value adjustments for
multiple comparisons, is in § [C.2} Tab. [I3] and Tab. [2@[
The analysis revealed a main effect of *warning’, x~(4)
= 286.33, p < .001, and a two-way interaction of *warn-
ing’ and *object’ x2(12) = 28.21, p = .005. We calculated
simple contrasts to unpack the two-way interaction, which
showed no differences between different objects per warn-
ing condition, indicating that each warning had the same
effect on all objects, with the exception of the Red Glow
warning on the frame object. More specifically, the Red
Glow warning worked significantly better in preventing
participants from interacting with objects for the frame as
compared to the pen, the switch, and the plant. Sensitivity
checks, conducted with a significance level of p = .05
and a power of .80, confirmed that our study’s estimates
exceeded the minimal detectable effect of .49.
Most Effective Warning We determined the most ef-
fective warning by calculating simple contrasts between
warnings, split by the different objects. Results are in
Fig. Bl A consistent pattern emerged for all objects with
respect to the Red Glow warning. The Red Glow warning
always led to more rejections compared to the no warning
condition, irrespective of the object it was attached to.
The Red Glow warning also led to more rejections than
all other warning conditions for all objects except for
the switch object. A consistent pattern also emerged for
all objects concerning the Pop-Up warning. The Pop-Up
warning did not differ from the no warning condition
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Figure 5: Percentage of object interactions as a function
of object and warning.

irrespective of the object it was attached to, both leading
to most object interactions. However, the effectiveness of
Blur and Scale Down warnings differed between different
objects. Blur was effective for all objects, as indicated by
more rejections as compared to objects with no warnings
attached, except for the frame. Scale Down was effective
for all objects, as indicated by more rejections than objects
with no warnings attached, except for the plant selector.
Overall, Red Glow was the most effective warning
in preventing participants from interacting with objects,
leading to most rejections. This effect was particularly
pronounced for the frame object. Pop-Up were no more
effective than objects without warnings, rendering Pop-
Ups as ineffective in preventing interaction. Blur and
Scale Down might be effective warnings for some objects,
although they were not as effective as Red Glow.

6.2.2. Decomposing the Behavioral Response-
Interview. We now present the results from our
interview, following the C-HIP decomposition, focusing
on (2) comprehension, (3) beliefs and attitudes, (4)
motivation, and (5) behavior. We coded the interview
following the methodology presented in § Unlike
in the first study, participants in this phase were aware
that some modifications to objects could indicate security
features. We slightly edited some quotes for readability.

(2) Comprehension of Warnings Red Glow was the
warning most associated with danger. However, in line
with the first study, 4/18 participants interpreted Red Glow
as helpful in selecting the object, suggesting a transfer of
understanding from existing VR experiences. P20 said:

You chose red probably because it was a bad color.
But maybe it was just a targeting thing, because I know
many VR games do... You mouse over something and it
glows red (P20)

Participants found Blur and Scale Down confusing and
did not associate them with danger or malice. The Blur
warning, seen as inconsistent, evoked curiosity in some
participants (3/18, e.g., P11) while others (3/18, e.g., P12)
attributed it to vision issues:

Most likely, I'm just going to press it faster than the
others, just to investigate (P11)

The blur gave me the sensation that there was
something wrong with me, not wrong with the object
(P12)

The Scale Down warning did not evoke a sense of
danger and was not associated with security risks. Most

(7/18) participants found it annoying and identified it as
a glitch or weird interaction. For example, P25 said:

It was just weird. I didn’t feel unsafe (P25)

In addition, 2/18 participants rushed to complete the
task in response to the object scaling down.

Then, 8/18 participants expressed habituation to Pop-
Up because these elements are common in other systems,
leading people to overlook their significance.

Nowadays there are pop-up windows everywhere.
I’'m just used to clicking through them (P25)

Also, 5/18 participants felt they were faced with a
critical security decision and made an additional effort
to read them.

You are changing something in the world, so maybe
it needs permission. (P20)

(3) Beliefs and Attitudes Towards Security and Pri-
vacy We asked participants about general threats in VR
environments. By exploring their understanding of mali-
ciousness, we aimed to determine whether they recognized
or were aware of potential security and privacy risks
associated with objects (e.g., a malicious pin-pad placed
to steal the PIN). However, they identified an object as
a possible threat only after the interviewer’ explanation
of the threat landscape at the end of the interview. The
identified potential consequences are from the same four
categories as in the previous study, with the same ranking.
Social engineering attacks are by far the first concerns in
VR environments (13/18), followed by malware (8/18),
personal data theft (6/18), and physical harm (3/18).

(4) Motivation for Not Interacting with Warnings
When questioned on warning effectiveness in influencing
their decision, most participants, i.e., 13/18, indicated that
the Red Glow warning was the most effective versus
4/18 saying it was not. Many participants, i.e., 12/18,
indicated that Scale Down is also effective; however, 3/18
had conflicting opinion about effectiveness while 5/18
considered it ineffective. Lastly, many participants found
Pop-Up (9/18) and Blur (7/18) to be ineffective. The
merged codebook for study 2 can be found in §

(5) Behaviour toward Warnings While we measured
behavior change in the user task (results in Fig. [5), the
interview explored participants’ intention to comply. At
the end of the interview, they ranked the warnings and
the intention to comply. Results are in Fig. [f] Most
participants (13/18) perceived the Red Glow warning as
effective, suggesting an inclination to avoid the objects.
We examined if some warnings were ranked as more
effective than others by calculating an ordinal logistic
regression model over the rankings for all warning types.
The overall analysis revealed a significant effect of type of
warning x2(6) = 21.57, p = .001, indicating a difference in
the ranked effectiveness between the warnings. Pairwise
comparisons showed that the Red Glow warning was rated
as significantly more effective than the Blur, x?(66) =
12.52, p < .001, the Pop-Up, x%(66) = 12.99, p < .001,
and the Scale Down warning, x2(66) = 16.03, p < .001.
No other comparisons were significant, all ps > .36.

7. Discussion

We explored security warning designs for VR interac-
tions, suggesting 11 potential warning delivery channels,
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three viable with current HMDs. We then developed and
tested four warnings in two user studies. Below, we sum-
marize our findings from our user studies.

7.1. Warning Effectiveness

Red Glow Our results indicate Red Glow as the most
effective warning design, significantly reducing interac-
tions with insecure objects. It was noticed among other
visual stimuli and associated with danger and caution.
While the Red Glow warning effectively influenced users’
decisions and triggered compliance some feedback from
the initial non-primed study suggested potential confusion
with navigational aids in immersive environments. More-
over, the questionnaire results suggest it makes users feel
more secure, requiring investigation into whether it might
inadvertently encourage interaction with insecure objects.

Red Glow is highly effective but there are indications
that it may be misinterpreted as a navigational aid,
potentially reinforcing a false sense of security.

Scale Down Our results show that Scale Down reduced
interactions when compared with No Warning; however, it
is far from the reduction observed with the best perform-
ing warning. Scale Down design has desirable features of
a warning, such as noticeability, usability degradation, and
mental workload increase. However, participants reported
less motivation to comply, and it was not associated with
danger or security risks. In addition, a small number of
participants in both studies pointed out that this warn-
ing caused a sense of urgency, fearing the object may
disappear, suggesting to complete the interaction as soon
as possible. While Scale Down may not be effective,
altering virtual physics shows promise and should be
further explored, e.g., magnetically repulsive objects.

Scale Down’s approach of altering virtual physics
increases noticeability, which is promising, but this
specific design was not effective.

Blur Blur reduced interactions for almost all objects, still,
like Scale Down, its effectiveness is well below the top
performing warning. This design has both desirable and
undesirable features. Among the desirable, this warning
was noticeable, increased friction, and gave less desire to
interact. Among the undesirable, Blur is not associated
with danger and most of the participants said that it did
not influence their decision to interact with the objects.

While Blur increases friction and discourages inter-
action, it lacks the necessary association with danger,
limiting its effectiveness as a security warning.

Pop-Up Our results indicate that Pop-Up is likely unsuit-
able as an effective warning. More specifically, our results
show that this warning is ineffective, as interactions with
insecure objects did not differ from those with secure ob-
jects. About half of the participants said they overlooked
its significance (comprehension) and it did not influence
the decision to interact with the object (motivation).

Pop-Up failed to impact behavior, suggesting that
traditional 2D-style pop-ups may be less effective in
immersive environments.

7.2. Additional Insights from the Interviews

Warning Customization Many participants (16/28) pro-
posed alternatives ideas, with varied visual elements (ex-
clamation marks, skull icons) or interactions (unskippable
popups for ten seconds). Some (9/28) suggested major
changes, like informing users about sensitive data or paus-
ing the experience. Others (6/28) recommended different
channels, like sensory feedback and virtual assistants.
These diverse suggestions show a preference for customiz-
able warnings, a concept needing further investigation.
Assess Warnings in Mixed Environments Few partici-
pants noted that certain warnings could be more alarming
in real-world contexts than in VR, implying our design
effectiveness might vary in mixed scenarios with video
overlays and should be explored in future studies.

7.3. Traditional and Immersive warning

Traditional security warnings are designed for 2D
interfaces, but immersive environments require a different
approach. Rather than directly adapting existing warnings,
we started from warning design principles and built new
security cues around immersive interaction. Our results
show that more conventional warnings, like Pop-Up, were
often ignored, while immersive warnings, like Red Glow,
were more effective but introduced new challenges, such
as navigational confusion. These findings suggest that
emerging security hazards in VR demand warnings that
are not just adaptations of 2D designs but are fully inte-
grated into an immersive human-computer interaction.

8. Limitations

Demographics We recruited VR-experienced remote and
in-person participants until platform saturation. Remote
participants came from diverse backgrounds and countries
(UK, USA, Portugal, Italy, Poland), while in-person par-
ticipants, mostly computer science students, were based
in Germany. The sample was predominantly composed of
younger participants, particularly in the in-person group,
where most were university students. This age distribution
may limit generalizability to older professionals more
likely to use VR for productivity. No participants reported
color vision issues. The Meta Quest 2’s spacer mitigated



any impact to participants with corrective glasses. To
reflect real-world constraints, time limits were used.
Apparent Discrepancies At first glance, the two studies
may appear to conflict on the Red Glow warning, but
the differing methodologies hinder direct comparison. The
first study, which did not prime participants about security,
used self-reports and interviews to assess independent
interpretation of warnings. The second study, with primed
participants, employed behavioral observations to evalu-
ate effectiveness. These differences make it challenging
to compare the studies directly. Priming in the second
study shaped participant responses, unlike the non-primed
first study. Additionally, the first study’s reliance on self-
reports introduces inherent biases, which the behavior-
based measurements of the second study mitigate. While
the first study establishes the warning’s noticeability, the
second reveals how context influences compliance. To-
gether, they provide a more comprehensive understanding
of the Red Glow warning’s effectiveness.

Risk perception. Since immersive tasks are not yet
central to productivity or frequent attack targets, users may
perceive VR risks differently. While entering a PIN felt as
high-risk, handling a virtual pen seemed low-risk, despite
research highlighting potential privacy threats [99]]. Inter-
views suggest participants relied on traditional security
models, overlooking VR-specific risks. This discrepancy
in mental models highlights the need to better understand
security awareness in immersive environments better. Ad-
ditionally, most participants primarily used VR for gam-
ing, which may have influenced their perception of secu-
rity warnings. Red highlights, often signaling interactivity
in games rather than security risks, may have reduced the
effectiveness of Red Glow in productivity settings. This
suggests that findings may not fully generalize to office-
productivity settings, particularly in high-stakes scenarios,
and future research should explore these contexts further.

8.1. Further Improvement

Warning Alternatives and Improvements Future re-
search should explore refinements and alternative warning
designs to enhance effectiveness. Physics-based warnings
could be strengthened as deterrents, while visual degra-
dation methods may require clearer security associations
than simple blurring. Additionally, Red Glow’s effective-
ness could be improved with iconography to prevent mis-
interpretation as a navigational aid.

Warning Channel Combination Warning Science [|159]
suggest using multiple sensory channels can be effective in
conveying warnings. However, we designed each warning
for a distinct channel, to isolate the variables we desired
to study. Future studies might explore combining warning
channels to capture attention and convey messages.
Explicitness We omitted explicit explanations of poten-
tial risks to avoid priming in the first study and keep
consistency with the second study. However, informing
users about the consequences of actions increases warn-
ing effectiveness. Investigating the extent to which more
verbose warning messages can influence the effectiveness
of immersive warnings requires additional research.
Context-Specific Warnings Our research shows warning
effectiveness in VR varies, with no single warning being
ideal for all contexts. Customizing warnings to threats

may improve effectiveness. Red Glow suits high-visibility,
danger-associated scenarios, while Scale Down and Blur
could suit subtler situations. The Pop-Up warning could be
good for clear messages. Tailoring warnings to VR risks
and experiences could enhance effectiveness by aligning
them with scenario-specific needs.

9. Related Work

Our review identified relevant works in security warn-
ings, VR interactions, and feedback methods. Here, we
focus on studies concerning warnings in immersive en-
vironments. Recent studies [53], [158]] explored security
indicators for hyperlinking within virtual reality. Windl et
al. [158]] employed a design-centric approach, primarily
informed by expert interviews instead of our systematic
surveys. Their findings align with ours, demonstrating that
a red visual warning captures user attention most effec-
tively. While they explored multiple sensory channels,
their results indicate that visual indicators—particularly
red—were the most effective nudge, irrespective of place-
ment in the VR scene. This supports our conclusion that
a red glow is the most effective warning, reinforcing its
association with danger and caution. Hosfelt et al. [S3]]
investigated warnings using a traditional 2D interface and
agent-assistant. Their interviews revealed that customiza-
tion played a crucial role in user recall and engagement,
with participants expressing a preference for adaptable
security indicators. Our study similarly found that cus-
tomization was a recurring theme in the user’s feedback,
where participants suggested custom visual elements and
interaction-based security cues. These insights align with
our broader interest, which extends beyond hyperlink-
ing to explore warnings applicable to various metaverse
interactions, from grabbable objects to canvases. Other
works [66], [67] focused on mechanisms to separate third-
party objects. Lee et al. [[67] developed a module that
isolates third-party content using visual wireframes. Our
research extends this by systematically analyzing user
responses to security warnings, assessing their efficacy in
preventing interaction with malicious objects.

10. Conclusion

This paper presented a systematic design exploration
of immersive security warnings in VR environments. Our
systematic literature review of prior work and analysis of
popular VR applications identified two input modalities,
four output channels, and two warning design strategies
from which we extracted eleven warning channels as
potential design ideas. We implemented four warnings
and assessed their impact and effectiveness with two
user studies. Our results revealed different outcomes for
effectiveness, with the Red Glow warning being the most
effective for preventing interaction, while others showed
potential for improvement. Our findings emphasize the
need for a continued exploration and iteration in designing
immersive security warnings.
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Appendix A.
Warning Design

A.1. Literature Review Search Queries

This section of the appendix presents the query we
used in our literature survey to filter the relevant paper.

A.1.1. Query for VR Interaction.
AND AND
OR controller* OR experience OR UX OR user

interfacex OR UI OR selectx OR manipulatx OR

(VR OR virtual)

(interactx) (techniquex OR feedbackx

grasp* OR pointing OR gestures OR sensorx OR
design OR haptic OR vibration OR auditory OR
visual OR usability)

A.1.2. Query for Warnings. (Warning* AND (securitx
OR web OR designx OR effectiveness OR usability
OR user* OR messagex OR dialoguex OR phishing OR
SSL OR alertx))

A.2. Design Exploration References

This section of the appendix includes references to the
papers and applications of our survey:

o Tab. [3] lists our full literature survey. The literature
survey maps the coding of our design exploration
with prior work and VR applications.

« Tab.[6]lists the VR applications analyzed in this work.

Appendix B.
User studies

In this section we describe the tools, e.g. tasks, ques-
tions, interview scripts used during the user studies.

B.1. Initial response: Remote Screening Ques-
tionnaire

Here we report the questionnaire we used for the
online screening in the first user study.



TABLE 5: Exploration of the interaction modalities and feedback mechanisms including external references.
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TABLE 6: Top 10 applications from Quest Store (Q) and
SteamVR (S).

Quest top 10

Steam top 10

Q1. YoutubeVR [92]] S1. War Thunder [132]
Q2. GymClass [87] S2. DCS World [126]
Q3. Instagram [ 88| S3. VRchat [131]

Q4. First Steps for Quest2 | S4. Raceroom [129]
[85]
Q5. Netflix [89] S5. Recroom [|130]
Q6. Deovr [84] S6. PokerStarVR  [|128]]
Q7. Bigscreen beta [83] S7. ChilloutVR [125]]
Q8. VR Animation Player | S8. Aces High 3 [124]

1) Age 2) Gender 3) Country of Residence 4) Do
you own a VR device? [a) Yes b) No] 5) If yes,
which one? 6) How often do you use your VR de-
vice? [a) Daily b) Weekly ¢) Monthly d) Rarely
e) Never] 7) If not, have you ever used a VR device
before? [a) Yes b) No] 8) What type of content do you
think is most engaging in VR? [a) Games b) Educational
Content c¢) Fitness d) Social Experiences e) Others]
9) Have you ever experienced discomfort from using a

VR device? [a) Yes b) No]

B.3. Behavioural and Initial Response: Objects

911
QY. Fitxr [86] S9. Zaccaria pinball [134] Task
Q10. Gravity sketch [103] | S10. Epic Roller Coaster
[127] In Tab. [/| we report the explanation of the task we

1) Do you have an Oculus Quest? [a) Yes b) No ]
2) Do you play PC video games on your Quest (via
Link Cable or Air Link)? [a) Yes b) No ¢) Not sure]
3) Would you like to participate in a virtual reality user
study with your Oculus device? [a) Yes, I want to partici-
pate in the VR study, including the Zoom video interview
after the study. We will contact you on Prolific to schedule
an appropriate time slot for you and us. The estimated total
time is between 60 and 90 minutes. The reward is £24.
b) Yes, I want to participate in the VR study only. The
estimated time is between 45 and 60 minutes. The reward
is £14. ¢) No, I do not want to participate in the study.]

B.2. Behavioural response: Demographic Ques-
tionnaire

In this section we report the demographic and VR
usage questionnaire administered in the prep-phase of the
second user study.

asked participants to complete during the task in both
user studies. Grabbable objects included a pen to place
in a mug, a sticky note to attach to surfaces or mid-
air, a microphone with an on/off button to press, and a
light switch to turn on a lamp. Pointer-based interactions
involved selecting a plant from a scrollable UI, entering
a PIN to log into a smart frame, and choosing a PIN for
the blackboard and monitor.

B.4. Initial Response: Questionnaire

In Tab. [§] we present the first study questionnaire.
questions. Response need to be selected for each question
with a 5 point likert scale displayed in the following order:
Strongly Disagree, Disagree, Neither Agree or Disagree,
Agree, Strongly Agree.

B.S. Initial Response: Interview

In our research, we utilized a semi-structured
interview method, detailed here. However, please note



TABLE 7: Task per object.

Object | Instructions

Pen Put the pen in the mug

Sticky Note Put the sticky note where you will
remember it

Turn on the microphone

Light up the lamp with the switch on
the desk

Select a plant

Use 3494 to login into the frame
Select a pin for the blackboard

Select a pin for the monitor

Microphone
Light Switch

Plant Selector
Smart Frame
Blackboard
Monitor

TABLE 8: Questionnaire Questions grouped by category:
SUS, NASA-TLX, and Motivation and Comprehension.
Participants responded on a 1-10 scale.

Questionnaire Questions

SUS

It was complicated to interact with this object.

I thought this object was easy to use.

I found the interaction with this object was well integrated.
I expected the object to react in a different way.

NASA-TLX

The object reacted how I expected it would.

It was physically draining to interact with this object.
I was satisfied with the interaction with this object.

I worked mentally hard to interact with this object.

I was irritated interacting with this object.

Motivation and Comprehension
I wanted to interact with this object.
I felt safe interacting with this object.

that the flow of conversation in each interview could vary,
with some not strictly following the provided structure
due to participant responses and context. Here we present
the main questions and procedure of the interview we
adhered that acted like guidelines during all the interviews.

Warm Up Phase. (a) Greetings (b) Explanation of
the the interview and what will be collected (c) Expla-
nation of the IRB and the possibility of withdrawing at
any moment.

Broad Task Question. (a) What are your experiences
with VR applications so far? (b) Tell me about the
experience you just played. How did you perceive this ex-
perience? (c) Did you notice some unexpected behaviour
or appearance in some objects?

Specific Task Question. (a) What do you think that
[Warning] meant? (b) Would you describe the [Warning]
positively or negatively? And Why?

VR Privacy Question. (a) What kind of security risks
can you imagine in a virtual world? (b) And what about
risk from a malicious object?

Motivation. (a) Do you think the [Warning] you expe-
rienced will deter users from interacting with them? Why?
New Warning Design. (a) What type of warning do
you think will catch a user’s attention about a security
risk?

Concluding. (a) Debrief about the interview motives
(b) Answering participant question

B.6. Behavioural Response: Interview

Security priming. At the start of the study, i.e. when
explaining the study structure and data collection, and
during the tutorial we state: “Interact with the secure
object and pass the non secure ones within the time limit.”
In the talk aloud part we let the user explore the objects
freely.

Warm Up Phase. 1) Welcome 2) Explanation (again)
of the audio recording and processing 3) Explanation of
the IRB and the possibility of withdrawing at any moment

Broad Task Question. 1) Tell me about the experience
you just played. How did you perceive this experience?
2) What were your thoughts when you were asked to
interact only with secure objects and avoid insecure ones?

Decision criteria. 1) How did you identify which ob-
jects were secure and which were insecure? 2) Do you
recall some unexpected interaction during the task with
some objects? Which one do you recall? 3) How did you
interpret these unexpected interactions? What impact did
they have on your decisions to interact or not interact with
the objects? 4) How did the different behaviors make
you feel? Did these feelings influence your decisions to
use the object or not? 5) When you think about your
decisions to (not) react over the course of the task, did
anything change over time?

Metaverse Privacy Question. 1) What kind of security
risks can you imagine in a virtual world? 2) What do
you think can happen interacting with a nonsecure object?
3) Do you think the [Warning] you experienced will deter
users from interacting with them? And why?

Warning Reflection. 1) Did you feel that some warn-
ings were more effective than others in influencing your
decisions? If yes, could you explain why and how?
2) Now, we will revisit some of the warnings you en-
countered during the task. I would like you to order them
from the one you perceived to be most effective to the one
you perceived to be least effective. Can you explain your
reasoning behind the order? 3) Thinking back, would
there have been a different type of warning that might
have influenced your actions more effectively? Can you
describe it?

Concluding. 1) Debrief about the interview motives
2) Answering participant question

B.7. Initial Response: Interview Codebook

For the first study this is the merged codebook the
researcher based the qualitative analyses on.
VR Experience User’s previous encounters or familiar-
ity with virtual worlds or virtual environments. [¢ Work
« Spare time]In-study feeling User’s emotional response
or subjective feelings towards the VR experience in the
conducted user study. [« Fine e Issue]Noticing User’s
attention towards the warning signal or users’ identifica-
tion of elements that would have attracted their attention.
[e No notice e Noticed as weird e Noticed as nor-
mal e« Noticed on canvas Uls e« Noticed on grabbable
objects]Perception of warning User’s interpretation or
understanding of the meaning behind the specific warning
signal or visual cue. [¢ Warning — Not Working: Perceived



as ineffective or non-functional, failing to deter interac-
tion with potentially risky objects. e Warning — Work-
ing: Considered effective and appropriate, successfully re-
ducing interaction with potentially risky objects.]Privacy
and security risks User’s perception or awareness of
the privacy and security risks present in virtual worlds.
[¢ None e Malware e Social Engineering e Profiling
« Physical Harm]Deterrence of proposed warning Users’
opinions on whether indicators or warnings for malicious
objects would discourage them from interacting with such
objects. [e Yes e No]Different Design User-generated
ideas or suggestions for alternative designs or formats of
warning signals or indicators. [« Enhanced Version e Be-
fore Entering o Pause Experience e Sensory Feedback
o Virtual Assistant]

B.8. Behaviour Response: Interview Codebook

For the second study this is the merged codebook the
researcher based the qualitative analyses on.
VR Expertice Possible expertise levels of participants
using VR. [e¢ Novice o Medium e Expert] Expected
unsecure object User’s expectation before entering the
study about what an insecure object could be. [« Different
interaction: Participants view insecure objects as the ones
that behaving abnormally. e Scary: Objects that evoke
fear or concern in the user. e Physical Harm: Objects
that could potentially cause physical damage. ] Criteria
Criteria users used to identify insecure objects. [ Dif-
ferent interaction from the “normal” one: Avoidance of
objects with behavior different from the No Warning one.
« Strange behavior: Refraining from interacting with oddly
behaving objects. e Object based: Non-interaction based
on a class of objects perceived as insecure. | Per-warning
feedback For each warning the perception and motivation
used to categorize the warning as secure or insecure.
[ Secure: Perceived as safe and trustworthy. e Insecure:
Perceived as risky or dangerous. e Effective: Considered
useful in indicating risks. e Ineffective: Seen as failing
to effectively indicate risks. e Feelings: Which emotional
responses the warnings evoked. ] Privacy and security
risks User’s perception or awareness of the privacy and se-
curity risks present in virtual worlds. [e None o Malware
« Social Engineering e Profiling e Physical Harm]

Appendix C.
Additional Numeric Details of our Analysis

For comprehensive insights into our research, here, we
report the statistical evaluations from both user studies and
the codebooks used.

C.1. User Study 1: Model Parameters and Esti-
mates Questionnaire

To examine whether the SUS and NASA items mea-
sured the underlying constructs of usability and mental
load reliably and were thus, suitable to be used in further
analyses, we calculated Cronbach’s alpha [26] with the
help of the psych package [156], determining internal
consistency for the items of each scale. For SUS items
Cronbach’s alpha was a = .83, and for NASA items

Cronbach’s alpha was « = .82, indicating good reliability
for both scales.

To investigate the effect of warnings, we conducted

linear mixed model analyses using the Ime4 package [16]
and ImerTest package [63]]. In the following, we report
the maximal random-effect structures that converged or
allowed a non-singular fit [14]. We fitted models with
warning’ (i.e. No Warning vs. Blur vs. Red Glow vs.
Scale Down vs. Pop-Up) as fixed effect. We fitted separate
models for SUS, NASA, as well as our own two items (i.e.
”I wanted to interact with this object”; I felt safe inter-
acting with this object”) as outcome variable, resulting in
four different models. To eliminate potential dependencies
nested within participants, items, and objects, the SUS and
NASA models had by-subject (i.e. participants), by-item
(i.e. items of the scale), and by-object random intercepts.
The models for our own two items had by-subject (i.e.
participants) and by-object random intercepts.
Warnings vs No Warning The analysis revealed a sig-
nificant main effect of *warning’ for SUS items, x2(4)
= 41.58, p < .001 and NASA items, x2(4) = 18.37, p
= .001, indicating that the warnings differed with respect
to their perceived usability and workload from the con-
trol condition (i.e. No Warning attached to the objects).
Moreover, the analysis revealed a significant main effect
for the ‘want’ item, x?(4) = 11.03, p = .026 and the
‘secure’ item, X2(4) =14.02, p < .007, indicating that the
warning had an effect on whether the object was perceived
as secure and desirable to interact with. Model parameters
and estimates for the models are given in Tab. []to Tab.[12]
SUS For usability, the model shows that when objects
had the Blur (M = 3.93, SD = 1.04) or the Scale Down
warning (M = 3.56, SD = 1.18) they were perceived
as significantly less usable as opposed to No Warning
attached (M = 4.3, SD = 0.98, see Tab. [0). No other
effect reached statistical significance for usability.

TABLE 9: Model Parameters and Estimates for SUS
Model. A significance level of p < .0001 is indicated
by f, a significance level of p < .01 is indicated by *.

Parameter Estimate SE t value 95% CI
Intercept 430 0.15 2943  [4.01, 4591
Blur vs. control -0.34  0.13 22,53 [-0.60, -0.08]*
Red Glow vs. control 0.02 0.12 0.21 [-0.20, 0.25]
Scale Down vs. control -0.77 0.13 -6.02  [-1.02, —O.SZ]T
Pop-Up vs. control -0.10 0.13 -0.81 [-0.35, 0.15]

NASA-TLX For mental workload, the model shows that
when objects had the Scale Down warning (M = 3.99,
SD = 1.05), they were perceived as significantly more
mentally taxing as opposed to No Warning attached (M
=447, SD = 0.87, see Tab. . No other effect reached
statistical significance for mental workload.

Want item For participants’ motivation to interact with
the object, the model shows that when objects had the
Blur warning, users reported significantly less desire to
interact with the objects (M = 3.44, SD = 1.26) compared
to objects with No Warning attached (M = 4.48, SD
= 0.90, see Tab. [TI). No other effect reached statistical
significance for the motivation to interact with the object.

Secure item For perceived security, the model shows
that objects that Scale Down (M = 4.22, SD = 0.81)



TABLE 10: Model Parameters and Estimates for NASA

Model. A significance level of p < .0001 is indicated by
T

Parameter Estimate SE t value 95% CI
Intercept 447 0.18 24.79 [4.12, 4.83]T
Blur vs. control -0.15 0.13 -1.10 [-0.41, 0.12]
Red Glow vs. control 0.13 0.12 1.12 [-0.10, 0.35]
Scale Down vs. control -0.50 0.13 -3.90 [-0.75, -0.25]T
Pop-Up vs. control -0.12  0.13 -0.96 [-0.37, 0.13]

TABLE 11: Model Parameters and Estimates for *want’
item. A significance level of p < .0001 is indicated by T,
a significance level of p < .001 is indicated by

Parameter Estimate SE t value 95% CI
Intercept 411 021 19.90  [3.70, 45171
Blur vs. control -0.71  0.23 -3.03  [-1.17, -0.25]%
Red Glow vs. control -0.11  0.20 -0.53 [-0.50, 0.29]
Scale Down vs. control -0.11  0.22 -0.51 [-0.55, 0.32]
Pop-Up vs. control -035 0.22 -1.56 [-0.78, 0.09]

where perceived as significantly less secure and Red Glow
objects (M = 4.82, SD = 0.39) were perceived as sig-
nificantly more secure as compared to objects with No
Warning attached (M = 4.46, SD = 0.67, see Table @

TABLE 12: Model Parameters and Estimates for ’secure’
item. A significance level of p < .0001 is indicated by T,
a significance level of p < .01 is indicated by *

Parameter Estimate SE t value 95% CI
Intercept 446 0.12 38.59 [4.23, 4.69]
Blur vs. control -0.15 0.14 -1.11 [-0.42, 0.12]
Red Glow vs. control 0.26 0.12 2.17 [0.02, 0.49]i
Scale Down vs. control -0.32  0.13 241 [-0.57, -0.06]F
Pop-Up vs. control -0.19 0.13 -1.48 [-0.45, 0.06]

Take-away Taken together the results from the question-
naire revealed that both Blur and Scale Down reduce
the perceived usability of an object, while Scale Down
is in addition also perceived as mentally taxing and not
secure. Only Blur seemed to have the effect to reduce the
motivation to interact with an object. Interestingly, Red
Glow made objects seem more rather than less secure,
contrary to the intention of the manipulation.

C.2. User Study 2: Log Odds, SE, and p-values
Warning Effectiveness

We investigate the effectiveness of warnings as mea-
sured by whether participants interacted or not by fitting a
model, including *warning’ (i.e. No Warning vs. Blur vs.
Red Glow vs. Scale Down vs. Pop-Up), *object’ (i.e. frame
vs. pen vs. switch vs. plant) and the two-way interaction
of "warning’ and ’object’ as fixed effects, using the Ime4
package [[16]] and ImerTest package [63]]. The model had a
by-subject (i.e. participants) random intercept. We report
the maximal random-effect structures that converged or
allowed a non-singular fit [[14].

The analysis revealed a main effect of ’warning’,
x%(4) = 286.33, p < .001, and a two-way interaction
of *warning’ and ’object’ x2(12) = 2821, p = .005.
To unpack the two-way interaction, simple contrasts were

calculated using the R emmeans package based on the R
Ismeans package [70]. There were no differences between
different objects per warning condition, indicating that
each warnings had the same effect on all objects, with
the exception of the Red Glow warning on the frame
object. More specifically, the Red Glow warning worked
significantly better in preventing participants from inter-
acting with objects for the frame as compared to the pen,
the switch, and the plant. Log odds ratio, p-values, and
standard error are reported in Tab. [T3]

TABLE 13: Comparisons of log odds ratio of participants’
interaction frequency split by warnings, p-values are ad-
justed by Tukey-method.

Warning - Contrast Log- SE p-value
Odds
No Warning Frame vs. Pen -1.04 0.67 0.41
Frame vs. Switch -1.38  0.73 0.23
Frame vs. Plant -1.04 0.67 0.41
Pen vs. Switch -0.34  0.82 0.98
Pen vs. Plant 0.00 0.77 1.00
Switch vs. Plant 0.34  0.82 0.98
Blur Frame vs. Pen 0.31 0.46 0.90
Frame vs. Switch  0.51 0.45 0.67
Frame vs. Plant 0.70  0.45 0.40
Pen vs. Switch 0.20 0.44 0.97
Pen vs. Plant 0.38 044 0.82
Switch vs. Plant 0.19 043 0.97
Red Glow Frame vs. Pen -1.32 048 0.03
Frame vs. Switch -1.86 048 < 0.001
Frame vs. Plant -1.32 048 0.03
Pen vs. Switch -0.54 043 0.58
Pen vs. Plant 0.00 043 1.00
Switch vs. Plant 0.54 043 0.58
Scale Down Frame vs. Pen 0.00 0.44 1.00
Frame vs. Switch -0.51 0.45 0.67
Frame vs. Plant -0.98 047 0.16
Pen vs. Switch -0.51 045 0.67
Pen vs. Plant -0.98 047 0.16
Switch vs. Plant -0.47 0.49 0.77
Pop-Up Frame vs. Pen 0.34  0.59 0.94
Frame vs. Switch 0.64  0.57 0.68
Frame vs. Plant -0.70  0.70 0.75
Pen vs. Switch 0.29 054 0.95
Pen vs. Plant -1.04 0.67 0.41
Switch vs. Plant -1.34  0.66 0.18

Most Effective Warning We determine the most effective
warning by calculating simple contrasts between warn-
ings, split by the different objects. Analysis parameters
are in Tab. T4

A consistent pattern emerged for all objects with re-
spect to the Red Glow warning. The Red Glow warning
always led to more rejections compared to the No Warning
condition, irrespective of the object it was attached to. The
Red Glow warning also led to more rejections compared
to all other warning conditions for all objects, except for
the switch object.

A consistent pattern also emerged for all objects with
respect to the Pop-Up warning. The Pop-Up warning did
not differ from the No Warning condition irrespective of
the object it was attached to, both leading to most object
interactions. The effectiveness of Blur and Scale Down
warnings however, differed between different objects. The
Blur warning was effective for all objects, as indicated by
more rejections as compared to objects with No Warning
attached, except for the frame.



The Scale Down warning was effective for all objects,
as indicated by more rejections as compared to objects
with No Warning attached, except for the plant selector.

Taken together the results show that the Red Glow
warning is the most effective warning in preventing partic-
ipants to interact with objects, leading to most rejections.
This effect is particularly pronounced for the frame object.
The Pop-Up warnings do not differ in their effectiveness
from objects without warnings attached, rendering Pop-
Up warnings as ineffective to prevent interaction. The Blur
and Scale Down warnings might be effective warnings for
some objects, although they were not as effective as the
Red Glow warning.

TABLE 14: Comparisons of log odds ratio of participants’
interaction frequency split by objects, p-values are ad-
justed by Tukey-method.

Object - Contrast Log- SE p-value
Odds
Frame  No Warning vs. Blur 0.90 0.51 0.41
No Warning vs. Red Glow 426 056 < 0.001
No Warning vs. Scale Down 140 0.50 0.04
No Warning vs. Pop-Up -0.34  0.59 0.98
Blur vs. Red Glow 336 051 < 0.001
Blur vs. Scale Down 0.51 0.45 0.79
Blur vs. Pop-Up -1.24  0.55 0.15
Red Glow vs. Scale Down -2.86 049 < 0.001
Red Glow vs. Pop-Up -4.61 059 < 0.001
Scale Down vs. Pop-Up -1.75 053 0.01
Pen No Warning vs. Blur 225 0.63 0.003
No Warning vs. Red Glow 399 0.63 < 0.001
No Warning vs. Scale Down 245  0.63 < 0.001
No Warning vs. Pop-Up 1.04 0.67 0.53
Blur vs. Red Glow 1.73 044 < 0.001
Blur vs. Scale Down 020 0.44 0.99
Blur vs. Pop-Up -1.21 051 0.12
Red Glow vs. Scale Down -1.54 044 0.004
Red Glow vs. Pop-Up -294 051 < 0.001
Scale Down vs. Pop-Up -1.40  0.50 0.04
Switch  No Warning vs. Blur 278 0.69 < 0.001
No Warning vs. Red Glow 378 0.69 < 0.001
No Warning vs. Scale Down 227  0.70 0.01
No Warning vs. Pop-Up 1.67 0.72 0.14
Blur vs. Red Glow 099 043 0.14
Blur vs. Scale Down -0.51 045 0.79
Blur vs. Pop-Up -1.11 048 0.14
Red Glow vs. Scale Down -1.50 0.45 0.007
Red Glow vs. Pop-Up -2.11 048 < 0.001
Scale Down vs. Pop-Up -0.60 0.49 0.74
Plant No Warning vs. Blur 2.64 063 < 0.001
No Warning vs. Red Glow 399 0.63 < 0.001
No Warning vs. Scale Down 147  0.65 0.16
No Warning vs. Pop-Up 0.00 0.77 1.00
Blur vs. Red Glow 1.35 043 0.02
Blur vs. Scale Down -1.17 047 0.09
Blur vs. Pop-Up -2.64  0.63 < 0.001
Red Glow vs. Scale Down -2.52 048 < 0.001
Red Glow vs. Pop-Up -3.99 0.63 < 0.001
Scale Down vs. Pop-Up -1.47  0.65 0.16

C.3. Demographics

Table [T5|provides an overview of participants’ age and
sex distributions across both studies. The left section of
the Table [I6] corresponds to User Study 1, covering par-
ticipants P1 to P10, while the right section corresponds to
User Study 2, listing participants labeled from P11 to P28.
For transparency, the full dataset containing additional

TABLE 15: Participants’ demographics for User Study 1
and User Study 2.

User Study 1

Category N %0

Gender

Male 32 842

Female 6 158

Age

18-24 15 395 User Study 2
25-34 11 289 Category N %
35-44 9 237

45-54 | 6 Gender

5564 1 26 Male 11 61.1
~64 1 26 Female 7 38.9
Country Age

United Kingdom 9 23.7 18-24 ? >0
United States 7 184 2734 8 444
Portugal 6 1538 35-44 ! 36
Italy 4 105 ¥ 0 0
Poland 4 10.5 Country

Turkey 1 26  Germany 18 100.0
South Africa 1 2.6

Austria 1 2.6

Vietnam 1 2.6

Canada 1 2.6

Australia 1 2.6

Latvia 1 2.6

Netherlands 1 2.6

demographic attributes is available in the public repository
referenced in the main text.



TABLE 16: Demographics of interview participants from
User Study 1 and User Study 2, including age, sex, and
country.

# Age Sex Country Study
P1 31 M United Kingdom 1
P2 25 M Portugal 1
P3 38 M Italy 1
P4 34 F United States 1
P5 42 M United Kingdom 1
P6 32 F Spain 1
p7 23 F South Africa 1
P8 22 M United Kingdom 1
P9 42 F United Kingdom 1
P10 33 M United Kingdom 1
P11 27 M Germany 2
P12 36 F Germany 2
P13 34 M Germany 2
P14 22 M Germany 2
P15 25 F Germany 2
P16 24 F Germany 2
P17 20 F Germany 2
P18 34 M Germany 2
P19 26 M Germany 2
P20 20 M Germany 2
P21 24 M Germany 2
P22 19 M Germany 2
P23 24 M Germany 2
P24 20 M Germany 2
P25 29 F Germany 2
P26 22 F Germany 2
P27 25 M Germany 2
P28 25 F Germany 2
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